

Bioenergetics to balance water takes and instream habitat

Lawrence Kees Water resources scientist

Acknowledgments

Murray Hicks, Jo Bind, Andrew Willsman, Arman Haddadchi, Gu Stecca

Zane Moss, Stu Sutherland, Erin Garrick, Cohen Stewart

Outline

- Allocation Method
- Relationship of invertebrate drift with flow
- Implications for water resource allocation

Problem

- High allocation
- Increasing demand
- Looking for a more ecologically robust method for water allocation (plan effectiveness)

Allocation method

NREI study locations

- Bioenergetic modelling of a river reach to determine carrying capacity
- Develop flow response (benthic entrainment curves) for each river

Research aims

- To provide knowledge and predictive models to assess the effects of flow change on trout, and other driftfeeding fish
- To assist decision making on minimum flow and water allocation

What is NREI?

What is NREI?

What is NREI?

Predicted net rate of energy intake contours and energetically profitable feeding locations - 15 m³/s

Predicted net rate of energy intake contours and energetically profitable feeding locations - 25 m³/s

Results

Good predictive reliability

Key point for fish: Drift rate (\sim flux) = drift conc x velocity

Oreti River and Mataura River drift x flow relationship

Results

Conclusions

- The NREI model will provide a robust ecologically realistic basis to make decisions on water allocation (gradient between competing water uses)
- Development of an environmental gradient that is an expression of life supporting capacity
- Traditional hydraulic habitat modelling may underestimate the benefits of flows (below through MALF to at least half median flow) for drift-feeding trout
- We are now working with NIWA and Cawthron to understand how the period of time that a river is at high flow affects the fishery

