

Where does microbial contamination come from?

Nick Ward *Team leader – ecosystem response*

Acknowledgements

- Elaine Moriarty (ESR)
- Brent Gilpin (ESR)
- Roger Hodson (ES Environmental Scientist- Surface Water Quality)
- Paula Scholes (ESR)
- Dianne Elliotte (Contractor Aquatech)
- Chris Owen (Contractor Southern Waterways)
- Graham McBride (NIWA Retired)
- Richard Muirhead (Ag Research)
- Chris Palliser (NIWA)
- Rob Williamson (ES Science Assistant)

What's the problem?

Sources of faecal pollution

- Over 250 samples analysed
- PCR Markers, Campylobacter
- Human, ruminant (sheep or cow), wildfowl

simple vs complicated

Maximum sheep PCR copies

- **1 1,000**
- 1,001 10,000
- 10,001 1,000,000

Maximum cow PCR copies

- **1 100**
- 101 1,000
- 1,001 100,000

Human source

Absence

Presence

Otautau Stream

Sub-catchment study

Thoughts

- Can you target policy spatially?
- What about microbial antibiotic resistance?
- Flow separation and geochemical tracing

Integration

• Every site is different – use context

Microbial is just the tip of the iceberg
.... but great segway

