
           

 

Appendices 

Supporting information on work outlined in the main report and technical 

chapters (TC 1 to TC 8) 

The following Appendices provide further information on the work outlined in the main report and 

technical chapters (TC 1 to TC 8). Specifically, the appendices include the following: 

Appendix A provides a literature review of national and international studies of drivers of 

hydrochemistry. 

Appendix B outlines hydrochemical metrics, including water type, mineral saturation indices, redox 

state, recharge altitude, and soil properties. 

Appendix C details the methods used for this report, including data quality assurance and quality 

control, and multivariate statistical methods used.  

Appendix D outlines capture zone delineation for surface and groundwater sites. 

Appendix E summarises the clustering of groundwater chemical data. 

Appendix F provides the datasets employed in the conceptual model. 

  



           

 

Appendix A – Literature review 

A Literature review 
A1 Introduction 
It is well established that the dynamics of hydrochemistry are generally driven by fluctuations in 

natural conditions or processes, and anthropogenic impacts (Clark and Fritz, 1997; Drever, 1997; 

Kendall and Caldwell, 1998; McMahon and Chapelle, 2008; Jiang et al., 2009; Dinka et al., 2015). 

These so called ‘drivers’ of hydrochemical variation include climate, geomorphic setting, substrate 

composition (rock, soil and biological substrate type), recharge source/mechanism and land use type 

and management. These drivers influence solute concentrations through various reactions. These 

include: precipitation, sorption, complexation and ion exchange reactions as well as isotopic 

fractionation and redox reactions.  

The assemblage of drivers varies naturally in space (some in time). Generally, different assemblages 

of key drivers result in distinct hydrochemical signatures: Where the assemblage of key drivers is 

similar, we see compositionally similar waters. Where the assemblages of drivers are different, 

water composition is different. Therefore, identifying the key drivers for a region and understanding 

why these key drivers vary in space and time is critical to explaining spatial and variation in water 

hydrochemistry and hence water quality.  

In this section we provide a brief review of national and international literature regarding the drivers 

of hydrochemical variation of water. We review five key natural drivers in the context of the 

Southland region. These were routinely identified in literature as altitude, proximity to coast, 

recharge mechanism, substrate composition (i.e. soils and geology) and redox processes (Clark and 

Fritz, 1997; Drever, 1997; 2002; Guler et al., 2002; Salvador et al., 2010; Rissman, 2011; Rissmann et 

al., 2015; Daughney et al., 2015). Land use type and land management are also important drivers of 

hydrochemical signatures but are not directly explored in this report because their impact on water 

quality largely depends on the aforementioned natural drivers.  

A2 Drivers of freshwater chemistry in national and international settings 
The following sub-sections should not be read in isolation as it is often difficult to tease out the sole 

effect of a single of the aforementioned  drivers on freshwater composition. Rather a mix of the 

drivers has unique water chemistry outcome. 

A2.1 Altitude 

High altitude areas (alpine, 800 m.a.s.l) are characterised by low temperatures, more extreme 

climatic conditions and thin soils which do not support much plant growth (carbon biomass). Erosion 

rates are high and hence stable areas for advanced weathering are small (Butler et al., 2001; 

Fitzsimons and Veit, 2001). High water volumes and limited opportunity for advanced weathering of 

rock and soil material equates to low concentrations of weathering derived solutes including Na and 

Ca. High flushing rates and moderate to low secondary clay development results in low dissolved 

solute concentrations including alkalinity and poor pH buffering (Borowiak et al., 2006; Bona et al., 

2007; Noges, 2009). Similarly, the marine aerosolic load to alpine areas is small and due to higher 

altitudes the stable isotopes of water are often strongly negative (Fritz and Clark, 1993; Bundi, 

2010). Strang et al. (2010) demonstrated that dilute surface and ground waters are a characteristic 

of alpine areas and numerous authors discuss both the isotopic and solute composition of high 

altitude streams and rivers (Fritz and Clark, 1993; Drever, 2002; Bundi, 2010).  

The scarce vegetation in alpine areas means that the levels of organic carbon are low and hence 

attenuation of contaminants through biological processes (e.g. denitrification) are also limited 

(Lambert et al., 1985; Blaschke et al., 1992; Quinn, 2002; Bundi, 2010). Accordingly, in the absence of 



           

 

land use the waters of these areas are characteristically dilute, oxidising, Ca/Mg-HCOs waters that 

are of low nitrogen concentration (Nichol et al., 1997; Stevenson et al., 2010). In  mid altitude areas 

(~400-800 m.a.s.l), subalpine or Hill Country, precipitation rates are lower than Alpine areas but still 

elevated relative to lowland areas in temperate humid climates. High precipitation volumes equate 

to significant flushing of major ions and dilution of surface and groundwater (Bona et al., 2007).  

The presence of vegetation in this range of mid altitude due to more favourable temperatures 

increases the levels of organic carbon which facilitates reduction processes and associated reduction 

of nitrogen (Andersen, 2003). Conversely across low altitude areas, precipitation is lower and the 

seasonally elevated temperatures increase water loss through evapotranspiration. Lowland areas in 

maritime settings also receive higher marine aerosol loads than alpine or inland hill country (Nichol 

et al., 1997). Across New Zealand, lowland landforms also tend to be depositional in nature both 

older (geomorphically) and more stable than Alpine and Hill Country areas (Summerfield, 2000). 

Accordingly, soils are pedogenically more evolved, thicker and tend to have higher secondary clay 

development and base saturation (B.S.). These factors in conjunction with higher evapotranspiration 

rates increase the concentration of marine aerosols, endogenous and anthropogenic salts in the soil 

profile during the growing season (Fritz and Clark, 1997; Goyal and Harmsen, 2013).   

The hydrochemical equilibrium at different altitude is however subject to variation with proximity to 

the coast (Salvador et al., 2010). Sea salt advection can contribute to high saline water in alpine 

areas that are close to the sea (Salvador et al., 2010). 

A2.2 Proximity to coast 

Distance to coast determines the variation in marine aerosol load and solute load of precipitation 

and subsequently the hydrochemistry (Nichol et al., 1997; Legrand and Puxbaum, 2007; Salvador et 

al., 2010). Areas that are close to the sea are subject to advections of maritime air masses that 

largely comprise of Na and Cl, and relatively low concentration of Ca, K, SO4 and Mg (Legrand and 

Puxbaum, 2007). Waters with a highly concentrated coastal precipitation source are therefore often 

of Na-Cl type. Salvador et al. (2010) demonstrated that high Na load in freshwaters of central Europe 

is contributed by sea salt from Atlantic Ocean. In New Zealand, Nichol et al. (1997) and Rosen (2001) 

showed that the precipitation is characterised by a high load of marine salts and that Na deposition 

drastically decreases linearly with increasing distance from coast in the first 20km. A cloud mass is 

likely to incorporate some land based dust as it traverses inland, and this reduces the precipitation 

load of Na and Cl and increases that of land derived ions such as SO4 and K (Salavador et al., 2010; 

Daughney et al., 2015). Similarly, dilution of precipitation occurs when cloud mass moves over an 

alpine area, resulting in orographic forcing around mountain ranges and subsequent intense rainout 

of marine salts (Daughney et al., 2015). Therefore, coastal precipitation in low altitude areas will 

characteristically comprise of a much higher dissolved salt load than high altitude precipitation that 

has crossed over mountain ranges and/or travelled considerable distances inland (Salavador et al., 

2010; Daughney et al., 2015). 

A2.3 Recharge mechanism 

Differences in hydrochemical signatures between alpine and low altitude areas due to precipitation 

source suggest that recharge contributions from these areas are likely to result in corresponding 

load concentration in receptor areas. Recharge sources and mechanisms such as land surface 

recharge (LSR), riverine recharge (RR) and a combination of both riverine and surface recharge, 

(mixed recharge, MR) have a significant impact on freshwater quality (Blasch and Bryson, 2007). 

Surface and ground waters are mainly recharged by rainfall flowing over and infiltrating through the 

soil (LSR) and overland flow over very steep/ non-reactive surfaces of alpine or bedrock settings. 

Solute concentration in LSR waters is generally higher than that of overland flow waters from alpine 



           

 

areas (Gat, 1980). Ground waters are also recharged by precipitation from distant sources that 

travels through rivers (RR). Recharge sources of ground water are commonly identified using stable 

isotopes of oxygen and hydrogen (e.g. δ18O-H2O and δ3H) and concentration of major ions such as Na 

and Cl (Kendall and Caldwell, 1998; Blasch and Bryson, 2007; Guggenmos et al., 2011; King et al., 

2015). Rivers that are recharged by alpine areas often dilute the generally low concentrated (Na, Cl 

and δ18O-H2O, δ3H) water from the alpine areas. Accordingly, aquifers that are adjacent to and 

recharged by rivers often have high water quality. For example Blasch and Bryson (2007) found that 

lower values of δ18O-H2O, δ3H, Na and Cl in ground water of Central Arizona are associated with 

recharge from Verde River that is fed with cooler and high altitude precipitation. Ground recharge 

water from land surfaces usually has high loads of mineral ions derived from contact with the soil as 

the water passes through. The load concentration is generally inflated if the recharge water by-

passes the soil matrix and flows through the macro-conduits (macropores) created by earthworms, 

large roots or wetting and drying cycles of the soil. The soil matrix can partially filter solutes, 

contaminants and pathogens from flowing water, hence if water bypasses this pathway, the load of 

contaminants and pathogens in ground water will increase. Various studies in New Zealand have 

demonstrated the increase in contaminants, pathogens and redox-sensitive species in by-pass flow 

(e.g. McLeod et al., 1998; Aislabie et al., 2001; Monaghan and Smith 2004; Houlbrooke et al., 2008, 

McLeod et al., 2008; Monaghan et al., 2016). Internationally, a bulk number of studies (e.g. Scott et 

al., 1998; Watson et al., 2000; Oliver, 2003; Martins et al., 2012; Oliver et al., 2013; Peukert et al., 

2014; Zhang et al., 2015, among others) have demonstrated the importance of by-pass flow as an 

amplifier of water contaminants. Hence aquifers recharged from land surfaces often have degraded 

water quality. Generally higher concentrations of Na (relative to Cl) and δ18O-H2O, δ3H, are indicative 

of land surface recharge than riverine recharge (e.g. Gat, 1980; Blasch and Bryson, 2007). The 

important role played by soil in determining the hydrochemistry of land surface recharged aquifers 

means soil chemistry is likely to confound the effect of recharge source/mechanism on 

hydrochemistry signature. Therefore, it is vital to take into account ancillary geologic and 

mineralogical and biological composition of particular soils and sub-soil layers that are in contact 

with water as it flows through the landscape.  

A2.4 Substrate composition 

Substrate composition (soil, rock and biological substrate types) plays a critical role in the evolution 

of hydrochemical signatures of ground and surface waters (Olson, 2012; Daughney et al., 2015; 

Rissmann, 2015). Substrate composition influences pH, cation exchange capacity (CEC), base 

saturation (BS), total exchangeable bases (TEB), cation concentrations and carbon and nitrogen 

content (C and N content, respectively). Soil and rock minerals are the first mediums of interaction 

when rain infiltrates or runoffs as it cascades over a landscape (Smith and Monaghan, 2003; 

Rissmann et al., 2015). Therefore the physical and chemical composition of soils and rocks 

determine the chemical composition of water flowing through the landscape. Thin, CO2 rich soils are 

often rapidly weathered and leached of soluble minerals by infiltrating rain, resulting in acidic waters 

(high in carbonic acid) recharging the ground water (Daughney et al., 2015; Essington, 2015). The 

chemical composition of infiltrating water and its residence time also determine the rate of chemical 

weathering of rock and soil minerals which in turn influences the chemical composition of recharge 

water (Rissmann et al., 2015; Daughney et al., 2015; Essington, 2015). Generally, the pH of 

precipitation is slightly acidic due to interaction with atmospheric CO2, so recharge waters become 

more acidic when rainfall infiltrates through the vadose zone rich in CO2. Reactive rocks such as 

limestone undergo rapid weathering as acidic precipitation flows through the soil, thereby 

enhancing the concentration of dissolved ions in water (Essington, 2015). The acidity of groundwater 

is reduced when precipitation flows through slow reacting felsic or mafic rocks (Wang et al., 2014). 



           

 

Infiltrating water can also leach cations, resulting in the replacement of monovalent ions (Na+ and 

K+) with divalent (Ca2+, Mg2+) and trivalent ions (Fe3+, Al3+) (Rissmann et al., 2015). This is more rapid 

in soils with high clay content. Alternatively, in areas of salt water intrusion, if clay soil is saturated 

with Ca2+ or Mg2+, the addition of K+ or Na+ ions in high levels may flush these cations from the 

exchange sites back into solution (Rademacher et al., 2001; Daughney et al., 2015). Some soil 

particles store anions which enhance the immobilisation of major ions such as phosphorus 

(Nziguheba et al., 1998; Frossard et al., 2000; Rissmann et al., 2015). In oxidising soils with a high pH, 

phosphorus solubility is low and phosphorus are strongly bound to soil materials and hence the 

concentration in soil water is low (Frossard et al., 2010; Rissmann et al., 2015). However, in organic 

matter rich soils with low pH (>5) redox reactions raise the solubility of phosphorus, and increase its 

concentration in soil waters.   

A2.5 Redox conditions 

Redox is reported as one of or the main controls over the variability in water chemical data 

nationally and internationally (Winter et al., 1998; Daughney et al., 2005; 2010; 2015; McMahon and 

Chapelle, 2008; Guggenmos et al., 2011; Rissman et al., 2012; Essington, 2015). Redox evolution is 

governed by organic carbon (electron donor), hydrology (especially in soils) and to some extent 

aquifer reduction potential (Krantz and Powers, 2002; McMahon and Chaplelle, 2009; Rissmann, 

2011; Rissmann et al., 2012; Killick et al., 2014). In temperate climate soils, organic carbon is seldom 

limited in temperate climate soils other than in areas above the treeline or 0 degree isotherm 

(Collins and Kuehl, 2000; Bernal, 2008; Fissore et al., 2009). Some substrates (or rock types) may 

have high concentrations of metabolisable organic carbon (peat, lignite, brown coal) that the 

majority do not (mud, silt, sandstone) (Krantz and Powers, 2002; Drever, 2002; Rissman, 2011). 

Redox evolution is determined by the abundance of metabolisable organic carbon, water residence 

time, exclusion from the atmosphere and redox buffers. The main redox buffer in most natural low 

temperature systems is Fe(III), the 4th largest abundance (McMahon and Chapelle, 2008).  

For soils, redox is governed by soil hydrology, particularly drainage class and organic carbon content 

(Mitsch and Gosselink, 2007; Bernal, 2008; Stenger et al., 2013; 2014; Killick et al., 2014). Well 

drained soils often have low organic carbon content and are oxidising, while poorly drained soils 

accumulate high organic carbon content and are reducing (Mitsch and Gosselink, 2007). Accordingly, 

water passing through an oxidising soil will retain oxic characteristics and that passing through a 

reducing soil will be reduced, and the extent to which both reactions happen depends on residence 

time in the soil (Rissmann et al., 2015). Redox reactions require sufficient time for metabolic 

processes to occur (Andersen, 2003).  

A3 Summary 
The above gave a summary of national and international key drivers of hydrochemistry. Overall, we 

identified many national and international studies that consistently identify a suite of key drivers 

determining hydrochemical and water quality outcomes (e.g. Nichol et al., 1997; Krantz and Powers, 

2002; Blasch and Bryson, 2007; Legrand and Puxbaum, 2007;McMahon and Chapelle, 2008; 

Salavador et al., 2010; Frossard et al., 2010; Rissmann, 2011 ; Rissmann et al., 2012; Daughney et al., 

2015). The drivers include: altitude, proximity to coast, recharge mechanism, substrate composition 

(i.e. soils and geology) and redox processes. 

The specific combination of the above key drivers, in conjunction with land use intensity, determines 

the natural variability in hydrochemistry. The latter equates to distinct spatial variation 

hydrochemical indicators and water quality metrics.  

  



           

 

Appendix B – Hydrochemical metrics 
This appendix details hydrochemical metrics used in this study.  

B1 Water type 
Water type is assigned as described by Freeze and Cherry (1979) on the basis of measured 

concentrations of the major ions Ca, Mg, Na, K, HCO3, Cl and SO4. The water type is determined from 

the dominant dissolved cation(s) and the dominant dissolved anion(s), based on concentrations 

expressed in milliequivalents per litre1. For example, seawater has Na as the dominant cation and Cl 

as the dominant anion and so is referred to as a Na-Cl type water. 

B2 Mineral saturation indices 
Mineral dissolution reactions can play an important role in governing the hydrochemistry of surface 

water and groundwater. Consider the generic reaction where the mineral AnBm dissolves to produce 

the ions A+ and B-: 

  mBnABA mn        (B1) 

The solubility product KSP is a constant that is specific for the mineral in question and that defines 

the relationship between A+ and B- at chemical equilibrium: 

mn

SP BAK ][][ 
       (B2) 

where square brackets represent the activities2 of the enclosed ions and n and m are the 

stoichiometric coefficients in the dissolution reaction.  The saturation index (SI) provides an 

evaluation of whether a given solution is at chemical equilibrium with respect to a given mineral:  










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K
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log

      (B3) 

If SI = 0 then the system is at chemical equilibrium and the solution is saturated with respect to the 

given mineral; if SI < 0 the solution is under-saturated and the mineral is expected to dissolve; and if 

SI > 0 the solution is oversaturated and the mineral is expected to precipitate. 

Measurement of the dissolved concentrations of several different elements, such as those listed in 

Table A 1, allows the saturation indices for a wide variety of minerals to be calculated by comparison 

to published tables of mineral solubility products (Langmuir, 1997). This information on mineral 

saturation state can provide useful information on what types of minerals natural water has reacted 

with, which in turn can provide insight into hydrological processes and flow paths (Hem, 1985). 

In this study, saturation indices are calculated with respect to a limited set of minerals. The minerals 

of interest for saturation calculations and their corresponding solubility products are listed in Table 

A1. These minerals are selected because they are most likely to reach chemical equilibrium as a 

result of in natural water-soil-rock interaction (Lasaga, 1984; Langmuir, 1997), and so differences in 

saturation state can be used to infer origin and flow pathways of water (Lambrakis et al., 2004; 

Daughney and Reeves, 2005; Cloutier et al., 2008). All calculations of saturation indices were 

performed using AquaChem 2014 software (Schlumberger Water Services) and the phreeqc 

                                                           
1 A milliequivalent (meq) is a measurement of the molar concentration of the ion multiplied by its ionic charge. For 
example, the Ca ion has a formula weight of 40 grams per mole and an ionic charge of +2, so a concentration of 10 
mg/L is equivalent to 0.5 meq/L. 
2 In thermodynamics, activity defines the amount of a substance that is available for reaction.  For most natural 
waters, activity is approximately equal to concentration in moles per litre of solution. 



           

 

thermodynamic database (Parkhurst and Appelo, 2013) and are based on either calculated median 

concentrations or sample-specific analytical results for the relevant elements. 

Table A 1: Solubility products for selected minerals (Fitz, 2002). 

Mineral Log KSP Dissolution Reaction 

Quartz -3.98 SiO2 + 2H2O ↔ Si(OH)4 

Chalcedony -3.55 SiO2 + 2H2O ↔ Si(OH)4 

Amorphous silica -2.71 SiO2 + 2H2O ↔ Si(OH)4 

Calcite -8.48 CaCO3 ↔ Ca
2+

 + CO3
2-

 

Dolomite -17.1 CaMg(CO3)2 ↔ Ca
2+

 + Mg
2+

 + 2CO3
2-

 

Aragonite -8.34 CaCO3 ↔ Ca
2
+ + CO3

2
- 

Siderite -10.9 FeCO3  ↔ Fe
2+

 + CO3
2-

 

Rhodochrosite -10.39 MnCO3 ↔ Mn
2+

 + CO3
2-

 

Magnesite -8.03 MgCO3 ↔ Mg
2+

 + CO3
2-

 

Gypsum -4.58 CaSO4 + 2H2O ↔ Ca
2+

 + SO4
2-

 + 2H2O 

Anhydrite -4.36 CaSO4 ↔ Ca
2+

 + SO4
2-

 

Goethite -41.5 FeOOH + H2O ↔ Fe
3+

 + 3OH
-
 

Manganite -18.26 MnOOH + H2O ↔ Mn
3+

 + 3OH
-
 

B3 Redox state 
Assignment of redox state is based on the methodology of McMahon and Chapelle (2008), as 

implemented in the excel spread sheet of Jurgens et al. (2009). This approach involves comparison of 

the concentrations of selected redox-sensitive substances to the thresholds listed in Table A 2.  It is 

recognised that redox reactions are usually not at chemical equilibrium in low temperature 

groundwaters. Hence this approach for assignment of redox state is based on the widely observed 

ecological succession of electron-accepting processes. Redox assignment for each sample includes 

identification of the dominant redox state (i.e., oxic, suboxic, or mixed (oxic-anoxic)) and the 

principal terminal electron accepting process operating within that groundwater. If the required data 

are available, iron reducing conditions are differentiated from SO4 reducing conditions by measuring 

the mass ratio of Fe(II) to total sulphide (Chappelle et al., 2009). 

Table A 2: redox category and dominant redox process for groundwater and surface water as determined from 
measured concentrations of water quality parameters (after Jurgens et al., 2009) 

Redox 
Category 

Redox 
Process 

Criteria for Assigning Redox State 

D.O. 

0.5 
mg/L 

 NO3-N 

0.5 
mg/L 

Mn(II) 

0.05  
mg/L 

 Fe(II) 

0.01 
mg/L 

 SO4  

0.5 
mg/L 

 Fe/H2S 

0.3 (mass 
ratio) 

Oxic O2 Y NA N N NA NA 

Suboxic O2 N N N N NA NA 

Mixed (oxic-anoxic) O2-Mn(IV) Y NA Y N NA NA 

Mixed (oxic-anoxic) O2-Fe(III) Y N NA Y Y Y 

Mixed (oxic-anoxic) O2-Fe(III)-SO4 Y N NA Y Y Y 

Mixed (oxic-anoxic) O2-SO4 Y N NA Y Y N 

Mixed (oxic-anoxic) O2-CH4 gen. Y N NA Y N NA 

Mixed (anoxic) NO3-Mn(IV) N Y Y N NA NA 

Mixed (anoxic) NO3-CH4 gen. N Y NA Y N NA 

Anoxic NO3 N Y N N NA NA 

Anoxic Mn(IV) N N Y N NA NA 

Anoxic Fe(III) N N NA Y Y Y 

Anoxic SO4 N N NA Y Y N 

Anoxic CH4 gen. N N NA Y N NA 



           

 

B4 Recharge altitude 
Recharge altitudes were calculated for each site based on the median data. The method for this is as 

follows. Firstly, the mean 18O composition of sea-level precipitation in Southland is derived utilising 

the following equation from Dansgaard (1964): 


18O = 0.695Tm – 13.6      (B4) 

Where Tm is mean air temperature, 9.3°C for Invercargill, from which a mean sea-level 18O value of -

7.1‰ is derived. This value is similar to the mean 18O composition of -6.98 ‰ (n = 32) for low 

altitude coastal groundwaters in Southland (ES unpublished data). Given some confidence about the 

mean 18O composition of sea level precipitation, it is possible to estimate the mean recharge 

altitude assuming a depletion factor of -0.23‰ per 100 m rise in altitude as recommended by 

Stewart and Taylor (1979) for New Zealand settings. 

B5 Soil properties (BS%, CEC, TEB) 
Cation Exchange Capacity (CEC) is defined as a measure of the number of negatively-charged binding 

sites in the soil. For example, a high CEC of soil indicates that the soil has a high ability to bind or 

hold exchangeable cations.  

Total Exchangeable Bases (TEB) is defined as the sum of cations in the soil that act as bases. These 

include K, Mg, Ca and Na (B5) 

TEB= [Ca]+[Mg]+[Ca]+[Na]     (B5) 

Base saturation (BS%) is defined as the fraction of the negative binding sites occupied by bases, such 

as K, Mg, Ca and Na (B6). Cations which are alkaline/act as base raise the soil pH 

BS%=TEB/CEC       (B6) 

  



           

 

Appendix C - Methods 
This appendix details data analysis methods used in this study. Specifically, data quality assurance 

and use of self organizing maps to estimate missing data, as well as multivariate statistical methods 

(HCA and PCA) are detailed. 

C1 Data quality assurance and quality control 
GW, SW, soil water, soil and precipitation samples were analysed by Hills Laboratories following 

standard procedures detailed in each section. Careful examination and grooming of the 

hydrochemical dataset as an essential first step in any investigation such as this was carried out.   

In this study, five approaches were used for quality assurance and quality control (QA/QC) of the raw 

data.  First, the continuity and length of the hydrochemical dataset were evaluated. Second, 

coverage of the hydrochemical parameters was assessed. This involved comparison of results for 

dissolved vs. total concentrations and field vs. lab measurements to determine if any parameters 

were sufficiently highly correlated that they could be dropped from consideration without significant 

loss of information. Where small populations of censored data were present these were processed 

using recommendations of Hornung and Reed (1990) (halved). Where small populations of “greater 

than detection” values existed these were processed by using the value given as the upper limit of 

detection. Where data had been entered into the database under pseudonyms i.e. “conductivity lab 

(µs/cm)” and “conductivity lab” the two columns were combined and the analyte renamed 

“conductivity (combined)”. Third, standard QA/QC was applied, including calculation of charge 

balance error and assessment of the robustness of estimated results derived from the SOM 

approach. Fourthly, cumulative probability plots were used for identification of outliers (and sub-

populations within the dataset). Finally, the characteristics and representativeness of the monitoring 

sites were evaluated. For example, sites with apparent contamination were identified and not 

considered in the data analysis, because their chemistry does not reflect natural processes. Specific 

methodological details for all of the aforementioned techniques are provided in (Daughney et al., 

2015), except for the cumulative probability plots, which are described subsequently. 

One notable advance in this study was to apply a modified version of the self-organising map (SOM) 

technique to estimate the values of every hydrochemical parameter that had not been specifically 

measured in the lab or the field. This approach greatly expanded the amount of information that 

could be used for the hydrochemical evolutions. A series of QA/QC checks confirmed that these 

hydrochemical datasets are fit for the purpose of this investigation and would permit a high level of 

analysis. The use of SOMs is also described subsequently. 

C1.1 Cumulative probability plots for data QA/QC 
Cumulative probability plots were used to identify outliers and to assess the robustness of 

estimation methods used for missing hydrochemical data. Cumulative probability plots were also 

used to support the identification of distinct populations within a datasets e.g. populations that are 

likely to be representative of direct contamination or a result from differing processes. All are 

detailed below. 

To assess the robustness of estimation methods for missing hydrochemistry data, the measured and 

estimated results were compared using the Kolmogorov-Smirnov test for each parameter. The test 

evaluates the maximum distance between the cumulative distributions of a single hydrochemical 

parameter between the population of measured vs. estimated results. The Kolmogorov-Smirnov test 

was performed using  = 0.05 using Statgraphics version 15.2.06 (Manugistics Inc., USA). The results 

of the Kolmogorov-Smirnov test were visualised using quantile-quantile plots as shown below. 



           

 

Using Mg as an example, Figure A 1 compares the distribution of the lab-measured concentrations 

for all groundwater and surface water samples collected from 2010 onwards (n = 5785) to the 

distribution of lab-measured plus estimated concentrations (n = 26399, of which 78% are estimated 

values). Quantile-quantile plots for estimation of missing hydrochemical data are based on 1) other 

available lab-measured hydrochemical data or 2) available lab-measured hydrochemical data, plus 

the date of sample collection and whether the sample was a groundwater or surface water. This 

comparison indicates that, for Mg, the former estimation approach gives slightly greater 

conformance to the 1-to-1 line, indicating a closer match to the distribution of the lab-measured 

concentrations. These results for Mg were found to be typical of other hydrochemical parameters. 

Hence the estimation approach based on lab-measured hydrochemical data alone, i.e. without 

inclusion of any additional ancillary data as input, is applied for the remainder of this study. For 

example, this meant that a missing value for Mg concentration in a sample would be estimated from 

the concentrations of other parameters that were measured in that sample, e.g. perhaps Ca, Cl, etc. 

 

Figure A 1: Comparison of the distributions of lab-measured and estimated concentrations using two different 
estimation approaches.  If the estimation method generates a distribution that is similar to that of the lab 
measurement, the points should be close to the diagonal 1-to-1 line.  A general pattern of points on either side of the 
line indicates a difference between the two distributions. 

To identify outliers/populations that are likely to be representative of direct contamination, 

cumulative probability plots were calculated for analytes that are indicative of direct anthropogenic 

source contamination (Na, Cl, K, SO4 and E. Coli). These samples were subsequently removed from 

the dataset (following methods of Sinclair, 1974). An example is illustrated in Figure A 2.  

Two major infliction points in the cumulative probability identify three distinct populations within 

the data. The infliction point/threshold between population 1 and 2 30 mg/L corresponds with the 

upper limit for natural background for Southland (Rissmann et al., 2012). The infliction 

point/threshold between population 2 and 3 (40 mg/L) corresponds to the threshold beyond which a 

significant anthropogenic Cl input is evident (Rissmann et al., 2012) supporting that population 3 has 

been effected by direct contamination and can be considered as outlier population. 
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Figure A 2: Cumulative probability plot of Cl (mg/L) for tile drain waters identifies 3 distinct populations within the 
dataset. Two major inflection points are depicted by arrows occur at c. 30 and c. 40 mg/L, respectively. The 30 mg/L 
inflection point reflects the upper limit for natural background for Southland whereas beyond 40 mg/l a significant 
anthropogenic Cl input is evident (Rissmann et al., 2012). 

C1.2 Self-organising maps for estimation of missing data  
For various reasons, data sources often times are missing measurement observations. Given that 

traditional hydrochemical data analysis relies on continuous measurements, much of the available 

information associated to a data set goes unused. One means of expanding the usefulness of 

measurement is to estimate missing values in a sparse data set using an artificial adaptive system 

technique. Artificial adaptive system techniques complete the missing data sets by rebuilding the 

hyper-surface based on underlying spatiotemporal multivariate relations. Some examples include 

the auto-associative neural network (Buscema et al., 1998) and self-organising map (Kohonen, 2001) 

techniques.  

In this study, a modified version of the self-organising map (SOM) technique is used to complete the 

hydrochemical data set. Application of the self-organizing map (SOM) technique to hydrochemical 

data involves training, diversity, and estimation. The SOM training process provides a way of 

representing multidimensional data in a lower dimensional space than the original data set. 

Reducing the dimensionality is based on a two-step process that is performed each time an input 

pattern is presented to the map: competition to determine the best matching unit (BMU) vector and 

cooperative learning (spreading information contained in the current input vector across the map). 

In the first training step, a weight vector Wi with the same dimensionality as the input data vectors Vj 

is assigned to a grid neurons in the SOM. Following an iterative procedure, the SOM is constructed 

considering the differences between the normalized input vector Vj and the weights Wi of the 

neurons given by Eqn. C1:  Di j = (Wi − Vj )
T (Wi − Vj )      (C1) 

where T is the transpose. Normalisation of the input vectors is conducted with respect to their 

standard deviations. 



           

 

In the second step, a weight update is determined as a function of the distance to the current BMU, 

expressed through the Gaussian neighbourhood function, ),( n . The rate used to adjust the 

weight of neurons decreases with distance between each neuron and BMU. Updates of the weights 

are adjusted according to Eqn C2: 

)],()()[,()()()1( nWnVnnnWnW iiii  
   (C2) 

where α(n) is a scalar value called the learning rate. The BMU ensures that the largest weight 

correction is adjusted in the direction of the input vector. The association effect takes place at the 

neighbouring nodes but to a lesser degree because of the Gaussian shape. This adaption procedure 

stretches the weight vectors of the BMU and its topological neighbours towards the input vector. 

Presenting similar input vectors to the map provides further activations in the same neighbourhood 

and thereby tends to produce clustering of data in the feature space. Association between neurons 

decreases during the learning process (the width of the neighbourhood function (n) is forced to 

decrease with n preserving large clusters of data while enabling the separation of clusters that are 

closely spaced).  

Model diversity is evaluated in the underlying density function using component planes (Vesanto, 

1999). The component-planes representation provides information on the distribution of 

component (variable) values according to a temperature scale (where red are high values, and blue 

are low values). In this way, an individual component plane is analogous to a histogram except the 

same value can be present in multiple places of the SOM when it relates to different groups of 

variables. The simultaneous inspection of multiple component planes allows for the visualization of 

correlated variables despite their disparate and sparse nature. The presence of relations will appear 

as similar patterns among component plane variables. In the case of a strong positive correlation 

along the sampling gradient, the colour patterns will be identical among variables meaning that as 

one variable increases (or decreases) the others do the same. Conversely, a strong negative 

correlation among variables along the sampling gradient will appear as the same patterns but 

opposite colour distribution, meaning that as values in one variable increase the other variable 

decreases. Principal component analysis (Eigenanalysis of the correlation matrix) is applied to 

component planes to visually reveal the relative strength among correlated groups of variables. One 

extension of this analysis is cross-component planes in which pairs of component planes map values 

are used to compute the correlation among monotonically increasing (or decreasing) trends.   

In the traditional SOM-based estimation approach, estimates of missing values are taken directly 

from the prototype vectors of the BMUs (Fessant and Midenet, 2002). Often times certain training 

data sets result in biased estimates (Dickson and Giblin, 2007; Malek, et al., 2008) requiring a 

modified scheme that incorporates bootstrapping (Breiman, 1996), ensemble average (Rallo et al., 

2002), or nearest neighbour (Malek et al., 2008). This study uses an alternative scheme that uses the 

associated BMUs as the initial values. The final values are arrived at iteratively (3-5 iterations) based 

on the simultaneous minimisation of the topographical error and quality error vectors (Figure A 3). 

The topographical error vector is defined as the proportion of all data vectors for which first and 

second BMUs are not adjacent units, and the quality error vector is defined as the average distance 

between each data vector and its BMU and is a measure of map resolution. The estimation of 

missing values (often referred to as imputation) is done simultaneously for all variables (Kalteh and 

Hjorth, 2009). In addition to missing data in sparse files, the modified SOM can be used as 

spatiotemporal interpolator of training variables to nodes (or elements) associated with 

groundwater model grid (mesh) (Friedel, 2014; Friedel, in review). 



           

 

In using the SOM as an estimator of missing values, it may be necessary to cope with the 

phenomenon of over-fitting. Over-fitting occurs when the degrees of freedom (complexity) 

associated with the problem are too high to be constrained in a stable way by the available data set 

(Iwashita et al., 2011) and (Friedel et al., 2012). To test for over-fitting, a ‘leave one out’ cross-

validation strategy is used in which there is one test value, and the training data set consists of all 

but that one test value (Efron and Tibshirani, 1993). Training and testing are carried out N times in a 

round-robin manner, where N is the number of values for a dependent variable each representing a 

new SOM. This strategy guarantees a minimum bias of the estimated prediction error (Hastie et al., 

2002) and enables nonlinear statistics to be computed for the trained SOM. Experience finds cross-

validation to be suitable for relatively small (hundreds of values) data sets; for larger data sets the 

traditional split-sample validation approach is used. In using the split-sample validation approach, 

the original data set are randomly split into two equal parts: 50% known observations for training 

and 50% independent observations for bias evaluation. For more details about SOM training and 

estimation, the reader also is referred to (Kohonen, 2001; Vesanto and Alhoniemi, 2000). 

Further detail on the approach and QA/QC of the SOM estimated data can be found in Daughney et 

al., (2015). 

 

Figure A 3: Minimization of the topographic and quality error vectors (iteration 3) are used to estimate missing values in 
sparse data sets. 

C2 Multivariate statistical methods 
Multivariate statistical methods are usefully applied to evaluate relationships between the 

hydrochemical parameters, for example to determine whether certain parameters or groups of 

parameters are typically correlated (positively or negatively) or uncorrelated.  Relationships between 

hydrochemical parameters were evaluated using Principal Components Analysis (PCA) and 

Hierarchical Cluster Analysis (HCA).  

For both PCA and HCA log transformed (expect pH and the isotopic indicators) and z-scored site 

specific median values of selected hydrochemistry parameters were used. PCA and HCA were 

conducted using StatGraphics version 15.2.06 (Manugistics Inc., USA) and unistat version 6.0nz 

(unistat Ltd.). 



           

 

C2.1 PCA 
PCA is essentially a mathematical manipulation that reduces the dimensionality of a dataset. PCA 

was performed following established methodologies (Güler et al., 2002; Lambrakis et al., 2004; 

Daughney and Reeves, 2005; Cloutier et al., 2008; Daughney et al., 2012). The results of PCA are the 

eigenvalue of the principal components (an Eigenvalue > 1 is considered significant) and the variance 

in the data that each PC can describe (example Table A 3).  PCA also provides principal component 

weightings or loadings of the considered variables (Table A 4). These indicate whether a parameter is 

significantly correlating with PC with highest correlation with eigenvectors closest to -1 or +1 (similar 

to conventional correlation techniques). A positive value indicates a positive correlation and vice 

versa for a negative correlation.  

Table A 3: PCA results for Southland groundwater. PCA confirms one significant component (eigenvalue > 1) which 
explains 44% of the data variance. Component 2 and 3 are significantly less significant than component 1 (eigenvalue 
close to 1). 

Component No. Eigenvalue Percent Cumulative % 

1 3.492 43.65 43.65 

2 1.439 17.99 61.64 

3 1.114 13.85 75.49 

Table A 4: Eigenvectors for each of the variables considered within the PCA for Southland’s groundwater indicating 
Northing and elevation are strongly positively correlating with PC1, Chloride and Sodium are strongly negatively 
correlating with PC1 

Variables Component 1 Component 2 Component 3 

Northing 0.493 0.195 -0.086 

Elevation 0.491 0.094 -0.029 

Calcium  -0.161 0.400 -0.256 

Chloride -0.487 -0.067 0.055 

Magnesium -0.153 0.428 -0.606 

Sodium -0.444 -0.202 -0.080 

Sulphate -0.157 0.641 0.128 

Potassium -0.090 0.392 0.730 

C2.2 HCA 
HCA was applied as a complementary technique to understand the relationships amongst the 

hydrochemical variables and identify related samples. Hierarchical Cluster Analysis (HCA) is a 

multivariate statistical method used to group individual samples into distinct hydrochemical facies 

(Güler, 2002; Daughney, 2005; Rissmann et al., 2015). HCA works by quantifying the degree of 

similarity between waters in terms of their chemistry and unambiguously assigns different sites to 

distinct categories or ‘clusters.’ Because HCA is a purely data-driven approach, it operates without 

any assumptions about the geographical, hydrogeological or land use setting. The HCA algorithm 

automatically excludes any sites that are missing values for one or more of the specified input 

variables. Therefore, if too many variables are selected for HCA, the subset of sites considered may 

be very small and/or regionally biased. On the other hand, if too few variables are considered, the 

results may not provide an accurate perspective on groundwater quality or the processes that 

control it.  

HCA was carried out in UNISTAT® 6.0 in two steps.  In the first step a squared Euclidian distance and 

single linkage were used to identify any potential outlying data points.  In the second step Wards 

linkage was used, as it has been found in previous studies to result in smaller and more distinct 

clusters (Guggenmos et al., 2011).  



           

 

The square of the Euclidean distance (E) is a measure of similarity (Eqn. A3). Ward’s method is based 

on an analysis of variance, and produces smaller distinct clusters than other linkage rules, such that 

each hydrochemical variable in a cluster is more similar to other variables in the same cluster than to 

any variable assigned to a different cluster. 

2

1

2 )(),( kj

n

j

ij zzkiE 
       (C3) 

where zi,j and zi,k represent the z-score for variable j at sites i and k. The summation is performed 

over all n variables included in HCA.  

Results from HCA are presented as dendrograms, an example of which is shown in Figure A 4. In this 

application of HCA the terminus of each vertical line represents a single hydrochemical parameter 

(for clarity only four of the 32 parameters are labelled). The Y axis is a dissimilarity measure: 

parameters or groups of parameters are joined together by horizontal lines, and the position of any 

horizontal line indicates how similar (small values on the Y axis) or dissimilar (large values on the Y 

axis) the parameters or groups it joins actually are.  Accordingly, the example in Figure 45 shows that 

the concentrations of Ca and Mg are strongly correlated in the dataset, as are the concentrations of 

Fe(II) and Mn(II); however, concentrations of Ca and Fe(II) are uncorrelated in the dataset. The 

horizontal red line represents a separation threshold at which the hydrochemical parameters are 

partitioned into five distinct clusters. A higher value for the separation threshold would result in 

recognition of fewer clusters, whereas a lower value would result in definition of more clusters. The 

actual value for the separation threshold must be selected by the analyst and is dictated by the aim 

of the investigation. 

 

Figure A 4: Example dendrogram that might be produced by HCA when clustering hydrochemical parameters. For clarity 
only four of the hydrochemical parameters are labelled on the X axis. 

Both PCA and HCA were carried out on z-scored log-transformed median hydrochemistry data. 

Median statistics per site per variable were generated in UNISTAT® 6.0. Median values were used as 

these provide a value that is less influenced by temporal variability within the data. Median data 

were log transformed (with the exception of pH) and z scores calculated (Güler et al., 2002; 

Guggenmos et al., 2011; Daughney, 2010; Rissmann et al., 2015). Therefore, the analysis does not 

directly consider the seasonal or episodic variation in water types that may exist as a result of 

changing flow conditions or associated contributing areas (Daughney, 2010). 
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Appendix D – Capture zone delineation for surface and groundwater 

sites 
This appendix details capture zone delineation for surface and groundwater sites employed in this 

study. 

D1 Surface water 
Capture zones (also referred to as water sheds) for surface waters are derived from DEM (REC, River 

Environment Classification) derived catchment boundaries for all catchment area contributing 

(upstream) of the monitoring location (example in Figure A 5). Each site has a unique polygon, many 

will share perimeter location because they were derived from the same parent data (REC polygon) 

but differences will arise where the combination of polygons will have been edited so the polygon 

closes at the monitoring site location rather than the confluence with the next contributing sub 

catchment.  

 

Figure A 5: example of capture zone/catchment area (pink outline) of a surface water site (pink dot) and stream network 
(blue lines) 

D2 Groundwater 
In this section, we describe how we delineated capture zones (CZs) for 173 unconfined groundwater 

sites of the 197 groundwater sites that were used for stratification and empirical modelling. The 

exclusion of groundwaters sites that tap into confined aquifers ensures that we only look at 

groundwaters that are connected to surface processes. 

Methods for delineation of capture zones (CZs) are relatively well established for surface water, 

where one makes use of topographical data (see previous section for detail on the delineation of CZs 



           

 

for surface waters). For groundwater (GW), currently no standard method for delineation of CZs 

exists. For simplicity often the properties of the entire aquifer are assumed to represent those of a 

GW’s capture zone, but this can lead to misleading interpretations/predictions. Available methods 

for GW CZ delineation include (sorted from simplest to most complex): 

1) Desktop review = arbitrary fixed radius or hydrogeological mapping, where the CZ is 

represented by a circle of fixed radius (Figure A 6). The radius is chosen based on expert 

knowledge, existing studies or guidelines (if applicable). 

2) Manual methods, where the CZ is represented by a circle of calculated fixed radius or 

simplified variable shapes, or the CZ is estimated using a uniform flow equation method 

(Error! Reference source not found.). The extent (e.g. radius) is determined based on 

hydraulic/geologic/topographic boundaries. 

 

Figure A 6: Example of desktop review and manual delineation of groundwater capture zones (CZ). 

3) AEM (analytical element modelling), where the CZ is delineated using analytical element 

modelling based on a AEM groundwater model. 

4) Numerical models, where CZs are delineated using very detailed (3D) GW flow modelling. 

The above methods require different model inputs (i.e. data) and resources, and provide CZ 

estimates of different levels of accuracy (Figure A 7, further detailed in Moreau et al., 2014 and 

2014a). Generally, the least complex desktop review methods need the least data and resources, but 

also provide the least accurate GW CZs. The choice of model is therefore dependent on available 

data and resources and the required level of accuracy. To normalize GW CZ delineation in New 

Zealand, GNS has put some guidelines together (Moreau et al., 2014 and 2014a). 

For the purpose of this study, we chose a manual method to delineate CZs for Southland GW wells. 

Specifically, we used the elongated parabola method assuming uniform flow and an ArcGIS tool 

developed by GNS Science (Toews et al., 2013 see http://www.gns.cri.nz/Home/Our-

Science/Environment-and-Materials/Groundwater/Database-and-tools/Groundwater-capture-zone-

GIS-toolkit). A CZ example established using the elongated parabola method is illustrated in Figure A 

8. To use the method/run the ArcGIS tool, one requires the following data inputs: 

1) Flow path of each well 

2) Hydraulic conductivity 

3) Saturated aquifer thickness 

4) Hydraulic gradient 

5) Pump or discharge rate 

6) Effective porosity 

Data of the above parameters are often lacking and need to be estimated as described 

subsequently. 

Fixed radius CZ 

delineation 

Elongated parabola/ 

uniform flow CZ delineation 

GW site 

CZ 



           

 

 

Figure A 7: data requirements, resources and accuracy of four capture zone delineation methods (Moreau et al., 2014) 

 

Figure A 8: CZ established using the elongated parabola method (Toews et al., 2013) 



           

 

The groundwater flow paths of the wells were established using general flow direction provided by 

Brydon Hughes (an expert in groundwater). Normally, one would use Piezometric head contours to 

establish flow lines for each groundwater site (as illustrated in Figure A 9). However, this process is 

very time consuming as it is a very manual process. We chose to do a more straight forward and less 

time consuming process and assume that the delineated CZs can be used to assess the assemblage 

of drivers that impacts each groundwater well reasonably well.  For further study, we suggest 

delineation of GW CZ using flowlines established through head contour interpretation. 

 

Figure A 9: Creation of a GW flowline perpendicular to the groundwater head contours {Toews et a., 2013]. 

Hydraulic conductivity, porosity and saturated aquifer thickness have been estimated for each 

groundwater management zone as presented in Gusyev et al, (2011), Morgan and Evans (2003), SKM 

(2005); Burbery et al. (2013), Phreatos (2007) and Hughes (2013), summarized in Table A 5. 

The hydraulic gradient of a well is normally estimated from the length of the flow line and the head 

difference between the well and starting point of the flowline (Eqn. D1). However, in our case 

piezometric head data were not available. We assume the hydraulic gradient for all wells is 0.01 

m/m (as a reasonable estimate, person. Comm. Brydon Hughes) 

∆ℎ =
ℎ1 − ℎ2

𝑙
⁄       (D1) 

where l is the length of the flow line, h1 is the head at the start of the GW flowline (usually aquifer 

boundary), h2 is the head at the end of the GW flowline (the GW well). 

Table A 5: Estimated hydraulic conductivity (KH), porosity (n), aquifer thickness (d) and abstraction rate (Q) for Southland 
aquifer zones 

Aquifer 
Average 
thickness [m] porosity 

porosity 
effective 

KH Hydraulic 
conductivity [m/d] 

Southland Fm 10 0.2 0.15 10 

Forest Hill Fm 10 0.2 0.15 10 

Pomahaka Fm 10 0.2 0.15 10 

Makarewa 20 0.2 0.15 10 

Middle GLM 20 0.2 0.15 10 

lower Oreti 15 0.2 0.15 15 

Central Plains 15 0.2 0.15 15 

Knapdale 10 0.2 0.15 25 

Orepuki 10 0.2 0.15 25 

Longridge 20 0.2 0.15 15 



           

 

Waihopai 20 0.2 0.15 15 

Waimea Plain 10 0.2 0.15 30 

Upper GLM 30 0.2 0.15 10 

Winton Hill Fm 30 0.25 0.19 10 

Wendonside 20 0.2 0.15 15 

Chatton Fm 35 0.25 0.19 10 

Waimatuku 20 0.2 0.15 20 

lower Aparima 15 0.2 0.15 30 

Castlerock 15 0.2 0.15 30 

Catlins 50 0.1 0.05 10 

Hokonui 50 0.1 0.05 10 

Upper Aparima 10 0.2 0.15 50 

Five Rivers 10 0.15 0.12 50 

lower Mataura 10 0.2 0.15 50 

Te Anau 10 0.2 0.15 50 

Wendon 20 1.2 0.92 25 

lower GLM 50 0.2 0.15 10 

Oreti 10 0.2 0.15 50 

lower Waiau 20 0.2 0.15 40 

Cattle Flat 10 0.2 0.15 100 

Upper Mataura 15 0.2 0.15 100 

Croyden 10 0.2 0.15 150 

Edendale 15 0.2 0.15 100 

Tiwai 25 0.2 0.15 75 

Waipounamu 15 0.2 0.15 250 

Riversdale 20 0.2 0.15 200 

Pump or discharge rate data are not available (only available if groundwaters are consented). We 

therefore assumed worst case, i.e. that the wells have a maximum pump rate of 20L/s (limit for 

consent application).  

Following the delineation of hydromorphic capture zones (HCZ) for each groundwater site it was 

possible to constrain the following hydromorphic setting: (i) groundwater zone (Te Anau, Waihopai); 

(ii) aquifer type (i.e., riparian, terrace etc); (iii), aquifer confinement (unconfined, semi confined, etc), 

(iv) up-gradient proximity to a given geomorphic domain (i.e., Alpine, Bedrock 1, Bedrock 2 and 

Lowland); (v) up-gradient proximity to an alpine, bedrock and/or lowland sourced stream and 

associated stream order, and (vi); soil hydrology (i.e. drainage class). Steps i – iii were intersected 

with the existing framework of Hughes (2003, 2016); iv – v through geomorphic domain and REC, 

and; vi through the TopoClimate South Soil Map.   

Although these relatively simplistic ‘capture zones’ help constrain the general hydromorphic setting 

of a groundwater site they are still crude relative to evolved capture zone analysis (e.g. developed 

using complex groundwater models). Limitations include: 

- 1) it is likely that we over- or under-estimate the size of the capture zone and 

- 2) the shape of the capture zone may differ from an elongated parabola.  

Despite these limitations, we assume that approach meets the purpose of this study, i.e. the method 

can give reasonable estimates on the proportions of geology/soil types that groundwater interacted 

with. 

From here on, groundwater capture zones are referred to as hydrodynamic capture zones (HCZ) so 

as to not be confused with more evolved capture zone analysis that factors in aquifer properties, 

pumping rate and flow line analysis.   



           

 

Appendix E – Groundwater clustering 
We initially used HCA clusters defined in Daughney et al. (2015). However, the clustering by 

Daughney et al. (2015) was run on a combined surface and groundwater data set, and was not 

specific to groundwater and did not provide sufficient resolution over groundwater origin and 

consequently hydrochemical setting. The poorer resolution of HCA clusters for groundwater reflects 

the combination of surface and groundwater data set for the HCA run and the use of only 10 

variables (hydrochemical analytes) (Daughney et al., 2015). For these reasons we reclustered the 

groundwater data separately and included an additional 5 variables including the stable isotopes of 

water (Variables Selected: pH, Cl, Cl/Br, TON, TN, Fe(II), Mn(II), Na, K, Ca, Mg, SiO2, SO4, Alk(total), 

δ18O-H2O). Clustering was carried out using HCA, Euclidian distance and Wards linkage method on 

log transformed z-scored data.  

Reclustering of 193 groundwater sites with a greater number of key variables identified 6 general 

groundwater clusters with distinct characteristics that correspond to 6 general hydrochemical 

settings for regional unconfined aquifer systems across Southland. Inclusion of δ18O-H2O was 

particularly important as it provided greater resolution around water source and recharge altitude 

and hence cluster membership than solutes alone. Assessment of drivers against new cluster 

memberships gave much clearer, hydrochemically/genetically sensible results and a good to strong, 

fitted miss-classification rate (see section 4.3.1.2 Main Report). 

The HCA dendrogram is depicted in Figure A 10. We identified 6 clusters (Figure A 11). The cluster 

characteristics are detailed in the following and summarised in Table A 6. 

 



           

 

 

Figure A 10: dendrogram of HCA clustering of groundwater data using 26 analytes (Variables Selected: pH, Cl, Cl/Br, TON, 

Alk(total), Ca, Na, K, TON,  δ
18

O-H2O, SO4, Mn(II), Fe(II), TN), Euclidian distance and Wards linkage method. Phenon lines 

for 6 and 4 clusters are shown.  

 



           

 

 
Figure A 11. Spatial occurrence of 6 clusters (regional hydrochemical signatures) for Southland groundwaters 

(unconfined). 

 

 

 

 

 

 



           

 

The 6 general hydrochemical settings for regional unconfined aquifer systems resolved from HCA 

correspond to 6 regionally significant hydrochemical settings for regional unconfined aquifers across 

Southland and are characterised as: 

 

Cluster 1 = Oxidising, River Influenced, Dilute,  

Very dilute waters, predominantly oxic redox state, northern and southern groundwaters, occur in 

riparian aquifers, inland or alpine ppt, derived from high altitude, primarily alpine river recharge.  

Low EC, oxidising; low alkalinity, low TON, Ca-HCO3 and Mg-HCO3 waters of low Cl; very high D.O. (n 

= 25). 

Cluster 2 = Oxidising, Land Surface Recharge, Low Impact 

Groundwaters of elevated conductivity and mod-low TON (n = 56) occurring across northern eastern 

and south central (west of Oreti) Southland in association with areas of reducing soils. High TOC and 

large coefficients of variation for time series redox sensitive species indicative considerable temporal 

variation in redox status. Dominantly, Ca-HCO3 waters. 

Cluster 3 = Weakly Reducing, Land Surface Recharge, Na-Cl waters.  

Mainly southeastern, Kamahi and Waikiwi Tce Formations with fewer south-western occurrences. 

Slightly elevated Fe(II) and TOC and low TON consistent with weak reduction in soil zone and/or 

aquifer. Predominantly Na-Cl waters (n = 43). 

Cluster 4 = Strongly Reducing, Land Surface Recharge, with high Organic Carbon and/or Carbonate  

Most prevalent at distal end of Mataura Catchment in conjunction with marine terraces, peat 

wetlands and variably lignite measures. Also occurring in places across southeast of Mataura River to 

Coastal Longwoods. Few occurrences in northern Southland.  These waters have very low TON, high 

dissolved Fe, relative elevated TAN (ammonification of organic matter) and organic carbon (n = 32). 

Cluster 5 = Strongly Oxidising, Land Surface Recharge, Old Surfaces  

Occurring predominantly across northern Southland in association with old remnant surfaces 

including Balfour, Wendonside and Knapdale areas with a long history of elevate groundwater 

nitrate. Few occurring in Five Rivers, Lower Waiau and Central Plains. Groundwaters characterised 

by very high TON (median 13.5 mg/L) but low SO4 due to anion retention in aluminium oxide rich 

soils associated with the oldest geomorphic surfaces in Southland (n = 19). Mainly, Na-Cl waters.  

 

Cluster 6 = Strongly Oxidising, Land Surface Recharge, Bypass   

Occurring across north-eastern and southern lowland these groundwaters are associated with areas 
of bypass flow. Waters are strongly oxidising with strongly elevated TON, Ca, SO4, K (n = 18) 
consistent with soil zone contamination due to natural vertical bypass.  
 

An ability to estimate the general hydrochemical setting for groundwater is important as redox in 

conjunction with water source and recharge mechanism are the two chief determinants of water 

quality outcomes (variation) in areas of intensive landuse in Southland and New Zealand (TC1-8 and 

Daughney, 2005; Daughney and Reeves, 2005; Daughney et al., 2010; Rissmann et al., 2012; 

Daughney et al., 2015). As defined above, general hydrochemical setting is a factor of recharge 

mechanism and water source and includes discrimination between river influence and land surface 

recharged aquifers and redox setting. Modifiers such as geomorphic age and substrate composition 



           

 

along with variation and marine aerosol load introduce extra resolution of hydrochemical metrics 

such as major ion facies (i.e., whether a water is a Ca-HCO3 or Na-Cl water), which although useful 

for understanding water provenance are not essential for explaining spatial variation in water 

quality. Accordingly, a more generalised set of 3 broad hydrochemical settings based purely on 

recharge and redox were resolved and are defined as:  

 

1. Oxidising, Land Surface Recharge (n = 93): clusters 2,5,6 

2. Reducing, Land Surface Recharge (n = 75): clusters 3,4 

3. Oxidising, River Influenced (n= 25): cluster 1 

Centroid statistics for the three general hydrochemical settings for Southland’s unconfined aquifer 

systems are presented in Table A 7 and depicted spatially in Fig. A 12. The pattern of regional 

hydrochemical settings for Southland’s unconfined aquifer systems shows dominance by oxidising, 

river-influenced groundwaters across Southland’s northern, inland basins (Te Anau, Fiver Rivers, 

Upper Mataura, Upper Waikaia and parts of the Waimea valley that are hydrologically connected to 

alpine rivers) and associated alpine range fronts as well as riparian aquifers adjacent to main stem 

rivers. Land surface recharged groundwaters showing signs of reduction occur predominantly in the 

southeast, south of the Waimea Valley and across the historical floodplain of the Matura River 

(Kamahi Formation and associated reworked surfaces). Reducing groundwaters occur interspersed 

with oxidising groundwaters across south-western Southland and with minor occurrences across 

northern Southland. Land surface recharged groundwaters that are oxidising occur across both 

northern and southern Southland but are consciously absent across large areas of southeastern 

Southland. This classification provides a regional spatial hydrochemical framework for Southland’s 

unconfined aquifer systems. 



           

 

 

Figure A 12. General hydrochemical settings for Southland unconfined groundwaters as defined from redox and 

recharge signatures in hydrochemistry.



           

 

Table A 6. Centroid statistics for hydrochemical variables (analytes) by groundwater cluster  

Data reported in mg/L for chemical species, S/cm for conductivity, and  (permil) for stable isotopes relative to relevant standards (i.e., V-PDB for δ13C-DIC, 

V-SMOW for δ18O/δ2H of H2O). Where TAM = Total Ammoniacal Nitrogen.  

Table A 7. Centroid statistics for hydrochemical variables (analytes) by general hydrochemical setting 

 
Data reported in mg/L for chemical species, and  (permil) for stable isotopes relative to relevant standards (i.e., V-PDB for δ13C-DIC, 

V-SMOW for δ18O/δ2H of H2O). Where TAM = Total Ammoniacal Nitrogen. 

General Hydrochemical Setting Statistic  pHField  DOField  Cond  Cl  Cl/Br  TON  MnII  Fe II
 SO4 TAM  DOC  TOC  AlkTot  AlkHCO3  Ca  K  SiO2  Na  Mg  TN  DRP 

13C-DIC  18O-H2O  2H-H2O

Oxidising LSR (n = 93) 6.3 234.0 6.1 19.8 252 4.7 0.002 0.10 6.8 0.04 1.2 8.2 42.1 41.6 16.2 1.0 22.5 16.2 7.7 4.7 0.015 **** **** ****

Oxidising, River Influenced (n = 25) 6.5 106.0 5.7 4.4 147 1.6 0.001 0.07 3.6 0.02 0.8 1.8 33.5 33.4 9.6 0.7 14.4 5.2 3.7 1.6 0.007 **** **** ****

Reducing LSR (n = 75) 6.2 221.9 1.7 26.4 232 0.3 0.029 0.86 6.9 0.06 1.6 7.9 44.0 43.4 11.7 1.1 23.2 21.3 4.7 1.1 0.010 **** **** ****

Oxidising LSR 6.3 234.0 7.5 21.0 253 7.1 0.002 0.10 7.1 0.02 1.2 8.2 47.0 47.0 17.0 0.9 20.4 16.9 7.5 6.1 0.016 -21.3 -8.2 -55.7

Oxidising, River Influenced 6.4 115.0 7.1 4.4 131 2.2 0.001 0.07 3.5 0.02 0.9 0.9 34.0 34.0 9.8 0.8 14.9 5.9 4.0 2.0 0.009 -20.6 -9.7 -69.0

Reducing LSR 6.2 216.6 3.7 26.0 238 0.7 0.036 0.85 6.9 0.05 1.6 10.4 43.0 43.0 12.4 1.1 24.0 21.0 5.0 1.0 0.010 -19.8 -7.4 -49.6

Oxidising LSR 0.1 0.3 0.4 0.5 0.4 0.8 2.1 1.3 0.9 3.3 0.6 0.8 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.7 0.7 -0.1 -0.1 -0.1

Oxidising, River Influenced 0.1 0.3 0.4 0.5 0.5 0.7 1.7 0.6 0.7 1.1 0.6 1.3 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.7 1.2 -0.1 -0.1 -0.1

Reducing LSR 0.1 0.3 0.8 0.4 0.3 1.4 1.5 1.7 0.8 2.2 1.3 0.7 0.8 0.8 0.8 0.4 0.4 0.4 0.5 1.1 1.7 -0.1 -0.1 -0.1

 Geometric Mean

 Median

 Coefficient of Variation

Cluster Statistic  pHField  DOField  Cond  Cl  Cl/Br  TON  MnII  Fe II
 SO4 TAM  DOC  TOC  AlkTot  AlkHCO3  Ca  K  SiO2  Na  Mg  TN  DRP 

13C-DIC  18O-H2O  2H-H2O

1 6.5 5.7 106.0 4.4 147 1.6 0.001 0.07 3.6 0.02 0.8 1.8 33.5 33.4 9.6 0.7 14.4 5.2 3.7 1.6 0.007 **** **** ****

2 6.6 5.2 221.6 18.6 270 2.5 0.002 0.11 6.4 0.05 1.2 9.4 58.2 57.7 16.1 0.9 26.1 15.8 8.0 2.7 0.017 **** **** ****

3 5.9 4.4 188.0 25.2 228 1.1 0.007 0.32 7.1 0.03 1.6 8.3 29.7 29.5 10.0 1.1 18.4 19.9 3.6 1.8 0.007 **** **** ****

4 6.5 0.5 277.1 28.2 238 0.1 0.199 3.24 6.6 0.12 1.6 7.3 74.7 73.2 14.6 1.0 31.7 23.2 6.7 0.5 0.018 **** **** ****

5 6.0 9.3 206.3 16.8 173 12.2 0.001 0.12 2.4 0.01 0.8 8.3 19.9 19.6 11.9 1.0 17.8 15.3 5.3 11.1 0.016 **** **** ****

6 6.1 6.1 316.7 28.7 300 12.0 0.005 0.06 24.7 0.04 1.6 5.1 33.7 33.4 23.0 1.3 18.1 18.3 9.9 11.3 0.011 **** **** ****

1 6.4 7.1 115.0 4.4 131 2.2 0.001 0.07 3.5 0.02 0.9 0.9 34.0 34.0 9.8 0.8 14.9 5.9 4.0 2.0 0.009 -20.6 -9.7 -69.0

2 6.5 6.7 222.8 21.0 271 3.1 0.002 0.09 7.0 0.03 1.2 11.9 58.0 58.0 15.6 0.9 25.5 17.8 7.7 3.6 0.019 -20.6 -8.2 -56.6

3 5.8 6.7 190.1 25.0 234 2.2 0.007 0.23 8.3 0.03 1.6 10.6 29.1 29.0 9.3 1.0 18.9 18.2 3.5 1.8 0.007 -19.8 -7.4 -49.5

4 6.4 0.7 277.2 29.5 250 0.0 0.203 4.68 6.2 0.11 1.5 10.1 72.1 70.5 14.6 1.1 32.0 24.0 7.0 0.4 0.028 -19.8 -7.5 -50.4

5 5.9 9.5 197.2 17.7 177 13.5 0.002 0.12 1.9 0.01 0.8 8.2 18.8 18.3 10.7 1.0 18.1 16.0 5.1 12.4 0.016 -21.4 -8.4 -58.0

6 6.1 7.2 318.7 27.3 304 12.8 0.005 0.07 24.6 0.02 1.7 4.0 33.4 32.7 23.6 1.2 18.8 19.0 10.2 13.1 0.011 -22.4 -7.7 -53.6

 Median

 Geometric Mean



           

 

Appendix F – further detail on validation of conceptual model 

F1 Statistical Modelling  
This section details the validation of the conceptual model through statistical modelling.  

F1.1 Groundwater results 

Categorical responses 
The various ground water groupings, including the four and six class levels of the ground water HCA, 

the redox clusters and the general categorisations (Error! Reference source not found.) comprised 

clusters with an average of between 32 and 64 sites per cluster with generally at least 15 sites in a 

class, with the exception of the General Redox Category that had a class with only three sites (Error! 

Reference source not found.A 8).  

Table A 8: Details of the categories and sites for the 5 groundwater categorical responses. The first value in the number 
of sites per category is the mean the minimum and maximum are shown in the parentheses. 

Categorical response Number of categorical levels Number of sites per category 

Cluster4 4 48 (25 - 88) 

Cluster6 6 32 (18 - 56) 

General Redox Category 4 48 (3 - 107) 

General Category1 6 32 (18 - 56) 

General Category2 3 64 (25 - 93) 

 

The sites varied appreciably between clusters in terms of their hydro-chemical characteristics (Table 

A 9). For example, relative to the other classes, class 4 of the six class level of the HCA had high 

conductivity, chloride and sodium, low dissolved oxygen and total organic nitrogen and high values 

of d18OH2O and d2HH2O (Error! Reference source not found.). 

Table A 9 Characteristic values of selected hydro-chemical variables in each class defined by the eight class level of the 

ground water HCA. The values are the mean of the median values of the sampling sites in each class. 

Class Cond Cl Na DOField TON DOC d18OH2O d2HH2O 

1 112 5 6 6 2 0.99 -10 -68 

2 231 21 17 6 4 1.46 -8 -56 

3 193 27 21 6 3 2.82 -7 -49 

4 286 30 24 2 0 2.59 -8 -52 

5 210 18 16 9 13 0.84 -8 -57 

6 322 30 19 7 13 1.68 -8 -53 

 

The reduced random forest models of the classifications had a fitted miss-classification rates of 

between 18% and 28% and fitted Kappa values ranged from 0.4 to 0.7, indicating the models had fair 

to good fits (Table A 10). Out-of bag (OOB, i.e. independent predictions) miss-classification rates 



           

 

ranged between 31% and 50% and OOB Kappa values ranged between 0.2 and 0.5. These results 

indicate consistency in the relationships between drivers and classes but a weak ability the predict 

class for a new (i.e. independent data) as a function of the drivers. 

The reduced models of the categorical responses retained between eight and 13 predictors whose 

importance is shown in Error! Reference source not found.Table A 10. This indicates that 

membership of classes was significantly associated with several predictors and that multiple drivers 

(i.e. driver assemblages) are associated with particular hydro-chemical outcomes.  

Table A 10. The order of importance of the predictors used in the RF classification models of the five categorical 

response variables and model performance. The values associated with the predictors indicate the rank order of 

importance. NA values indicate the predictor was not included. Model performance is the out-of-bag (OOB) 

misclassification rate and the misclassification rate of the fitted model and the OOB and fitted Kappa values. 
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The partial dependence plots for each model indicate many associations between driver gradients 

and hydro-chemical outcomes that are consistent with prior expectations indicated by the 

conceptual model. An example of partial dependence of Class 4 of the six-class HCA classification 

(Cluster 6) on the 6 most important predictors is shown in Error! Reference source not found.A 13. 

The hydro-chemical characteristics of class 4 are shown in Error! Reference source not found.A 10. 

The plots show the effect of the 6 most important predictors (X-axis) on the probability a site 

belongs to Class 4 (Y-axis). The values on the Y-axis of these plots are logit transformed probabilities. 



           

 

They should be interpreted as the marginal effect of the predictor (here always a category) on the 

response (which here is the logit transformed probability of belonging to a particular class). 

Error! Reference source not found. A 13’s top left plot indicates there is a marked difference in the 

probability of membership associated with the 5 category predictor precipitation source 

(PPTSource). This indicates that, all other things being equal, a site has a low probability of belonging 

to Class 4 if PPTSource is in the Alpine and Alpine2 categories. And that a site has a higher probability 

of belonging to Class 4 if PPTSource is Coastal or Coastal2 category. Similarly, a site has lower 

probability of belonging to Class 4 if SubSurface is UndiffClasstics, GeomorphicAge is Q1, SoilRP is 

Low and CRPdomain is Low/Low. 

Where predictor categories have similar values this indicates that there is little difference in the 

response probability for these different values of the predictor. For example, in Figure A 13, the 

probability of membership of Class 4 associated with the predictor “PPTSource”, indicates that 

membership probability is similar when PPTSource is Alpine, Alpine2. 

Partial plots for all classes of each of the five groundwater categorical responses are supplied 

separately with the following naming convention “GWPartialPlotsCatResponse_Classification_-

me.pdf" (e.g., "GWPartialPlotsCatResponse_Cluster6.pdf"). 

 



           

 

Figure A 13. Partial Dependence of Class 4 of the six-class HCA classification of the groundwater sites on the 6 most 

important predictors. The bars indicate the marginal effects of each variable’s category on the class logit transformed 

probability. 

Continuous groundwater hydro-chemical variables 

The performance of the models fitted to 23 individual hydro-chemical continuous variables varied 

from reasonable (e.g r2> 40%) to poor (r2 < 10%) (Error! Reference source not found. A 11). The 

number of predictors included in the reduced models for individual groundwater hydro-chemical 

variables and the order of importance of the predictors varied from one (e.g. NH4 and DRP; Error! 

Reference source not found.A 11) to 13 (e.g. TON, TN, AlkTot and AlkHCO3; Error! Reference source 

not found.A 11) depending on the variable (Error! Reference source not found.A 11).  

Examples of partial dependence two hydro-chemical variables (Cl and TON) are shown in Error! 

Reference source not found. and Error! Reference source not found.15. The plots show the effect 

of the 6 most important predictors (X-axis) on the absolute value of the response variable (Y-axis). 

They should be interpreted as the margi-l effect of the predictor (here always a category) on the 

absolute value of the response.  

The value of the response variable Cl varies over all sites from 0.9 to 41 with a mean value of 19.6 

(Error! Reference source not found.11). Error! Reference source not found.A 14’s top left plot 

indicates there is a marked difference in the value of Cl associated with the 5 category predictor 

PPTSource. This indicates that, all other things being equal, a site has a Cl value of greater than 25 if 

PPTSource is in the Coastal or Coastal2 category. If PPTSource is the Alpine and Alpine2 categories, 

all other things being equal, values of Cl are less than 20. Similarly, a site has higher values of Cl if 

RiverConnectivity is Low, AquiferType is Lowland and VerticalBypassRedox is High/Low. 

The value of the response variable TON varies over all sites from 0 to 6.5 with a mean value of 1.3 

(Error! Reference source not found.A 11). Error! Reference source not found.A 15Error! Reference 

source not found.’s top left plot indicates there is a marked difference in the value of TON 

associated with the 5 category predictor PPTSource. This indicates that, all other things being equal, 

a site has a TON value of greater than 5 or 6 if PPTSource is in the Coastal or Inland categories 

respectively. If PPTSource is the Alpine and Alpine2 categories, all other things being equal, values of 

TON are less than 4. Similarly, a site has higher values of TON if SoilRP is Low, GeomorphicAge is Q2-

Q4 and RiverConnectivity is Low. 

Partial plots for all of the 26 individual hydro-chemical variables are supplied separately in the file 

"GWPartialPlots_ContinuousVariables.pdf" 

Table A 11. Order of importance of the individual predictors included in the reduced random forest models for the 23 

individual hydro-chemical continuous variables and OOB and fitted performance (r
2
)
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pHField 2 1 3 - - - 5 - 4 6 8 7 9 15 17 

Cond - 2 3 - - - 6 9 5 4 7 8 1 31 31 

Cl - 1 - - - - - - - 2 - 4 3 50 51 

Cl_Br - 1 - - - - - - 2 - - - 3 26 26 

DOField 3 1 2 5 13 10 6 11 7 4 8 9 12 6 9 



           

 

TON 3 1 2 4 12 11 6 13 9 8 5 10 7 26 26 

Mn - - - - - - - - - - - 1 - 0 0 

Fe 1 2 - - 3 7 5 - 4 6 - 8 9 24 25 

SO4 2 1 4 6 9 12 3 13 8 5 10 11 7 19 19 

NH4 - 1 - - - - - - - - - - - -2 1 

DOC 3 1 2 5 4 11 6 13 7 10 8 12 9 6 11 

TOC - 1 - - - - - - - - - - - 11 12 

AlkTot 1 - 3 - - - - - 2 4 5 6 - 15 16 

AlkHCO3 2 3 1 5 13 10 6 12 4 7 8 9 11 11 14 

Ca - - 2 - 6 - 3 - 1 - - 4 5 19 19 

K - - - - - - - - 1 - - - - 6 6 

SiO2 1 2 - - - - - - - - 3 - - 24 24 

- - 1 - - - - - - - - - - - 45 45 

Mg - 3 1 - - 5 4 - 2 6 7 9 8 27 27 

TN 3 1 2 4 13 11 7 12 8 6 5 10 9 29 30 

DRP - - - - - 1 - - - - - - - 1 1 

d13CDIC 1 3 - - 5 - 2 - - 4 - - 6 11 11 

d18OH2O - 1 - - - - - - - - - - - 38 38 

 



           

 

Figure A 14. Partial Dependence of one of the 26 individual groundwater hydro-chemical variables (Cl) on the four 

predictors that were included in the reduced model (note that these predictors are all categorical). The bars show the 

marginal effects of each variable’s category on the absolute value of the response. 

 

 

 

 

 

Figure A 15. Partial Dependence of one of the 31 individual groundwater hydro-chemical variables (TON) on the six most 

important predictors that were included in the reduced model (note that these predictors are all categorical). The bars 

show the marginal effects of each variable’s category on the absolute value of the response. 

 

F1.3 Surface water results  

Categorical responses 
The categorical surface water responses comprised classes with an average of between 5 and 46 

sites per category, depending on the number of categories represented by the response (Error! 

Reference source not found.A 12Error! Reference source not found.).  

Table A 12. Details of the number of sites in each category for the 5 surface water categorical responses. The first value 

in the number of sites per category is the mean the minimum and maximum are shown in the parentheses. 



           

 

Categorical response Number of categorical levels Number of sites per category 

HCA_Thresh 8 12 (1 - 24) 

General_Redox 2 46 (33 - 60) 

Redox_Proc 3 31 (17 - 43) 

WaterTypeS 5 19 (1 - 40) 

Water_Type 17 5 (1 - 19) 

 

The sites varied appreciably between clusters in terms of their hydro-chemical characteristics (Table 

A 13). For example, relative to the other classes, class 1A0 of the HCA classification had low 

conductivity, high chloride and sodium, low dissolved oxygen and total organic nitrogen and high 

values of d18OH2O and d2HH2O (TableA 13Error! Reference source not found.). Class 2B0 was 

characterised by high conductivity, high chloride and sodium, very high TON and medium values of 

d18OH2O and d2HH2O (TableA 13Error! Reference source not found.).   

Table A 13. Characteristic values of selected hydro-chemical variables in each class defined by the eight class level of the 

surface water HCA classification. The values are the mean of the median values of the sampling sites in each class. 

Class Cond Cl - DOField TON DOC d18OH2O d2HH2O 

1A0 166 39 22 8 0.01 29 -6 -38 

1B0 54 2 3 11 0.21 2 -10 -66 

1C2 100 11 9 11 0.65 3 -8 -55 

2A1 303 25 18 12 2.97 4 -7 -49 

2A2 187 22 16 11 1.66 5 -7 -48 

2B0 285 27 18 9 5.85 4 -7 -49 

2C0 208 33 19 11 1.46 11 -6 -42 

3B2 215 23 15 10 1.42 8 -7 -47 

 

The reduced model of HCA classes had a fitted miss-classification rate of 2% and a OOB miss-

classification rate of 27% (Table A 13). These results indicate a strongly consistent relationship 

between drivers and HCA classes and reasonable ability to predict HCA class (i.e. general hydro-

chemical composition) as a function of the drivers.  

The reduced model retained nine variables whose importance is shown in TableA 13Error! 

Reference source not found.. This indicates that membership of HCA classes is significantly 

associated with all nine predictors. Partial dependence of each of the eight HCA classes on the 8 

most important predictors are shown in Figure A 16A 16 and their hydro-chemical characteristics are 

shown in TableA 13Error! Reference source not found.. The plots show the effect of the 8 most 

important predictors (X-axis) on the probability a site belongs to Class 1 (Y-axis). The values on the Y-

axis of these plots are logit transformed probabilities. They should be interpreted as the margi-l 

effect of the predictor on the response (which here is the probability of belonging to a particular 

class).  

The plot indicates (for example) that the probability of a site belonging to HCA class 1A0 increases 

with increasing values of Land_Surface_Recharge and generally decreases with increasing values of 

the other 7 predictors (Figure A 16A 16). Similarly, the probability of a site belonging to HCA class 2B0 

increases with increasing values of Land_Surface_Recharge, HVLL, and Q1_Q4_Mafic but decreases 

with increasing values of the other five predictors (Figure A 16A 16). 



           

 

The models of the four other categorical (General_Redox, Redox_Proc, WaterTypeS and 

Water_Type) all performed reasonably well with the Water_Type model having the poorest cross 

validated performance (Table4). These models retained between two and nine predictors (Table A 

13).  

Partial plots for all classes of each of the five surface water categorical responses are supplied 

separately with the following naming convention 

“SWPartialPlotsCatResponse_Classification_name.pdf" (e.g., " 

SWPartialPlotsCatResponse_HCA_Thresh.pdf"). 



           

 

 

Table A 14. The order of importance of the predictors used in the RF classification models of the five categorical response variables and model performance. The values associated with 
the predictors indicate the rank order of importance. Missing values ( - ) indicate the predictor was not included. Model performance is the out-of-bag (OOB) misclassification rate and the 
misclassification rate of the fitted model and the OOB and fitted Kappa values. 
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Figure A 16. Partial Dependence of each of the eight surface water HCA classes on the 8 most important predictors. The lines show the probability of class membership for given values of 

each predictor (i.e. the change in probability along the predictor gradient when all other predictors in the model are held at their respective mean values). The ticks on the x-axis 

represent centiles in increments of ten of the predictor data. The lines have been smoothed to reduce noise to aid interpretation.   

 



           

 

Individual surface water hydro-chemical variables 

Thirty continuous hydro-chemical response variables were modelled (Table A 15). Model 

performance varied across the modelled responses from reaso-ble to very good. The number of 

predictors included in the reduced models and the order of importance of the individual predictors 

varied for each variable. Partial plots for all models are provided as supplementary files. 

Partial plots for the selected responses are shown in Figure A 17. Partial plots for all of the 

continuous individual hydro-chemical variables are supplied separately. 

The plot indicates (for example) that the value of d13CDIC decreases with increasing values of 

Alpine_River_Recharge and HVLL (Figure A 17), which are the only two predictors that were included 

in the reduced model for this variable (Table A 15).  Similarly, the Conductivity decreases with 

increasing with increasing values of Alpine_River_Recharge and Mixed_ Alpine_River_Recharge and 

increases with increasing values of HVLL and Q1_Q4_Mafic (Figure A 17). 
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d13CDIC - 1 2 - - - - - - - - - - - - - - - - - - - - - - - - 68 68 

d18OH2O 1 6 11 3 10 16 15 18 8 4 14 2 13 - 17 12 9 7 19 - - 20 - 5 - - - 92 93 

d2HH2O 1 6 12 2 9 17 14 15 11 4 19 3 13 20 16 7 10 8 18 - - - - 5 - - - 93 93 

Cl 4 2 - 6 10 - 13 11 3 1 12 5 - - 9 7 - 8 14 - - - - - - - - 94 94 

Br 2 3 10 6 8 1 11 12 5 4 18 7 15 - 20 9 - 13 16 - - - 17 19 14 - - 86 86 

SO4 4 1 2 - - - 5 - 3 - - - - - - - - - - - - - - - - - - 81 82 

- 1 5 - 2 14 - 10 11 6 4 13 3 - - 12 - 7 8 - - - - - - 9 - - 91 91 

Cond 3 1 2 6 5 - 10 - 9 8 - 7 11 - 12 14 4 - - - - - - 13 - - - 79 80 

Ca 14 4 3 19 1 7 5 8 15 16 13 17 11 12 6 - 9 18 10 2 - - - 20 - - - 58 59 

Mg 7 4 2 - 1 9 - - 10 8 - - - - 6 - 5 - 3 - - - - - - - - 86 86 

K 11 2 3 12 9 1 4 6 5 7 - 16 14 8 18 - 13 19 17 - 10 15 - 20 - - - 67 67 

SiO2 6 - 3 - 1 5 - 8 7 4 - - - - 2 - - 9 - - - 10 - - - - - 74 75 

AlkTot 14 - 3 - 1 8 4 7 12 11 - - - 9 5 - 10 13 6 2 - - - - - - - 54 55 

AlkHCO3 14 8 3 - 1 6 - 9 12 10 7 - - 11 4 - - 13 5 - - 2 - - - - - 51 51 

DOC 5 - - - - - - 4 - - 2 - - 1 - 3 - - - - - - - - - - - 81 84 

pHField - 9 - 20 7 4 6 12 8 18 1 16 13 5 - 3 10 17 19 14 2 11 - - 15 - - 48 48 

DOField - - - - - 5 - 4 - - 2 - - 1 - - 3 - - - - - - - - - - 38 38 

TON - - 1 - 3 5 - 2 - - - - - - - - - - 4 - - - - - - - - 76 77 

Mn 9 1 - 6 11 7 3 8 - - 2 10 12 - 14 5 4 - 13 - - - - - - - - 71 71 

Fe 6 - - 5 - - - - - - 2 - - 1 - 4 - - 7 - 3 - - - - - - 75 76 

NH4 9 2 - 7 - 1 - - 4 8 - 10 6 - - 3 5 - - - - - - - - - - 46 46 

SS 7 9 4 3 - - 1 10 - 15 5 8 2 12 16 13 11 18 - - - - 6 19 14 17 20 33 33 

DRP - 5 - 8 6 - 4 - - - 1 9 7 2 - - - - - - 3 - - 10 - - - 32 33 

SSV 13 5 16 14 18 - 4 7 17 15 3 6 8 2 11 1 9 19 - - 12 - 10 20 - - - 62 62 

Clarity 3 5 - 1 - 8 - - 10 7 12 4 2 - - 13 9 11 14 - - - - 6 - - - 72 73 

Ecoli - 5 3 7 - 2 4 1 - - - - - - 6 - - - - - - - - - - - - 38 38 

Table A 15. Performance of the RF models for the individual surface water hydro-chemical variables. Model performance is indicated by cross validated and fitted model r
2
 values. The values 

associated with the predictors indicate the rank order of importance. Missing values ( - ) indicate the predictor was not included. Model performance is the cross validated misclassification 

rate and the misclassification rate of the fitted model. 



           

 

 

 

 

 

ORP - - - - - - - - 1 - - - - - - - - 2 - - - - - - - - - 37 38 

I 6 2 4 8 12 1 - 5 3 9 10 14 11 - - 7 - - 13 - - - - - - - - 76 76 

F 8 - - - - 6 4 7 - 9 5 - 3 2 - - - 1 - - 10 - - - - - - 64 64 

Turb 11 10 3 5 13 2 1 - - 14 6 9 4 - - - - - 12 - 8 - 7 - - - - 50 50 

Temp - - - - - 2 - 1 4 - - - - - 5 - - - - - - 3 - - - - - 36 36 



           

 

 

Figure A 17. Partial plot for reduced model for selected individual surface water hydro-chemical variables. The Y-axis represents the margi-l effects of each predictor on the absolute value 

of the response (i.e. the change in probability along the predictor gradient when all other predictors in the model are held at their respective mean values). The ticks on the x-axis 

represent centiles in increments of ten of the predictor data. The lines have been smoothed to reduce noise to aid interpretation 



           

 

F1.4 Summary  
In this analysis we tested the relationships between observed hydro-chemistry and drivers 

postulated by the conceptual model. Despite the relatively small test datasets, all the models 

achieved statistical significance, however, the models performance was variable (i.e. models 

explained differing amounts of variation). In general, model performance was better for the surface 

water than the groundwater data.  

Model fitting used variable reduction to reduce the predictors selected by the models to the most 

parsimonious set. While some models selected only a subset of predictors, the reduced models 

generally included a number of predictors. In particular, various models predicted classes that 

represented groups of sites with similar hydro-chemical characteristics. These models always 

included many predictors, which supports an underlying hypothesis postulated by the conceptual 

model that aspects of hydro-chemical character are associated with a complex mix of drivers (i.e. 

driver assemblages). 

We used partial plots to reveal the associations between surface and groundwater hydro-chemical 

characteristics and the model predictors. The model predictors represented the drivers of hydro-

chemistry postulated by the conceptual model. We found that the partial plots described 

associations between hydro-chemistry and drivers that are consistent with the conceptual model.  

F2 Stratification 
To support findings of stratification presented in Chapter 4 and our conceptual understanding of the 

chemical evolution of Southland’s freshwater, we illustrated the assemblage of dominant drivers 

diagrammatically within a GIS mapping platform, presented below. The latter is particularly handy 

for streams as it spatially depicts the relationship between changes in dominant drivers and changes 

in hydrochemistry from source to confluence or source to river mouth.  

Alpine derived rivers and streams 

Within this cohort surface waters characterised as 1B0b by Daughney et al. (2015) are a mix of ARR 

and BRR. These streams and rivers originate within alpine areas, gaining significant BRR below the 

tree line (ca. 800 m RSL) prior to debouching onto the lowland plains (example in Figures A 18, A19 

and A 20). Unlike purely BRR derived surface waters these waters are not characterised by reducing 

signatures or Na-HCO3/Cl facies rather they retain a dominant ARR signature from source to mouth. 

However, an assessment of median hydrochemistry between 1B0a and 1B0b waters reveals a 3.5, 

1.2 and 4.5 times increase in dissolved Mn(II), Fe(II) and TOC for 1B0b waters supporting a significant 

contribution from areas of reducing BRR.  

Figure A 18 illustrates the changes in hydrochemistry of the Mataura River from source to mouth. 

Specifically, redox state changes from oxic to mixed (oxic-anoxic) due to the increasing 

proportion/influence of reducing soil/geology on the concentration of redox sensitive. Major ions 

composition changes from Ca dominated to Na dominated with decreasing proximity to the coast 

due to increasing marine aerosolic Na (and Cl) load in precipitation. 

Further, HCA cluster membership of the Mataura River samples changes from a 1B0b to 1C2a and 

finally to 1C2b as the solute contribution from BRR and LSR increases. Similarly, HCA cluster 

membership of the Oreti River changes from 1B0a to 1C2a, and that of the Aparima River changes 

from 1B0a to 1C2a to finally 2A2c from source to mouth (Figures A 19 and A 20, respectively). The 

change from 1B0b to 1C2a occurs as the proportion of LSR exceeds 10%. 1C2b waters differ from 

1C2a waters in that the latter have a higher proportion of BRR. The change from 1C2a/1C2b to 2A2c 



           

 

facies reflects negligible ARR and greater BRR and most importantly LSR derived solute inputs 

associated with young mafic soils and geology. 

Bedrock Derived Streams and Rivers  

All of the Bedrock Derived Streams and Rivers sites have a source associated within currently or 

historically forested bedrock outcrop (senso lato ‘Hill Country’), that occurs below 800 m RSL and 

have no Alpine River Recharge (ARR) within their capture zone. 

Changes in stream chemistry as the proportion of LSR (or degree of influence associated with LSR) 

within a capture zone increases coincides with a shift in hydrochemical facies from BRR dominated 

(1C2a/1C2b cluster membership) to BRR derived waters that have a significant LSR component (2A2c 

facies) and to carbonate influenced waters (2A1o facies) (examples illustrated in Figure A 21 and A 

22). 



           

 

 

Figure A 18: Diagrammatical representation of the hydrochemical evolution of freshwater within the Mataura River with 
respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the proportion of 
area associated with driver categories at each site. Labels detail redox state, long water type and HCA assignment after 
Daughney et al. (2015). 



           

 

 

Figure A 19: Diagrammatical representation of the hydrochemical evolution of freshwater within the Oreti River with 
respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the proportion of 
area associated with driver categories at each site. Labels detail redox state, long water type and HCA assignment after 
Daughney et al. (2015). 



           

 

 

Figure A 20: Diagrammatical representation of the hydrochemical evolution of freshwater within the Aparima River with 
respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the proportion of 
area associated with driver categories at each site. Labels detail redox state, long water type and HCA assignment after 
Daughney et al. (2015). 



           

 

 
Figure A 21: Diagrammatical representation of the hydrochemical evolution of freshwater within the Waimea Stream 
with respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the 
proportion of area associated with driver categories at each site. Labels detail redox state, long water type and HCA 
assignment after Daughney et al. (2015). 



           

 

 

Figure A 22: Diagrammatical representation of the hydrochemical evolution of freshwater within the Makarewa River 
with respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the 
proportion of area associated with driver categories at each site. Labels detail redox state, long water type and HCA 
assignment after Daughney et al. (2015). 



           

 

Lowland - Land Surface Recharged (LSR), Streams and Rivers 

Sites classified as having a lowland-LSR source constitute the largest and most varied category of 

Southland surface waters (n = 38 sites). These surface waters are generally more mineralised (at 

their source) than ARR and BRR derived streams. Only one site, Sandstone Stream at Kingston 

Crossing Rd, also has a minor (1.4% of the catchment area) BRR component within its capture zone. 

None of the sites have ARR within the capture zone. 

Generally, we often see a change in redox state due to changes in proportion/influence of reducing 

and oxidising soil and geology in the capture zone. Similarly, major ion composition changes as a 

function of increasing/decreasing influence of marine aerosolic Na and Cl with decreasing/increasing 

proximity to the coast and/or change in geology (e.g. proportion of felsic and carbonate geology). 

Figure A 23 depicts the hydrochemical evolution of freshwater within the Waimatuku Stream with 

respect to the three drivers (parent material and age, precipitation source, CRP). Redox state 

switches from mixed (oxic, anoxic) to oxic and back to mixed (oxic, anoxic) as the proportion of 

oxidising to reducing soil and geology switches between high and low. Major ions of the Waimatuku 

Stream remain Ca and HCO3, despite a significant proportion of coastal precipitation (from source to 

mouth) suggesting that the Waimatuku stream is significantly impacted by the presence of 

carbonate rock within its capture zone. Secondary major cations swap between Na and Mg as the 

proportion of felsic and mafic geology increases, respectively. HCA cluster membership of the 

Waimatuku stream at its source is 3B2a (Organic carbon/reducing clusters LSR). Further downstream 

and at its mouth HCA cluster membership is 2A1o (carbonate influenced waters that exhibit periods 

of saturation with respect to calcite), again reflecting the significant influence of carbonate on the 

composition of the Waimatuku stream. 

Only sites from with the Central Plains area (Waimatuku, Middle Creek and Ayr Creek) deviate from 

the general trend. Specifically, despite strongly reducing soils these sites all show oxidising 

characteristics such as elevated TON and low Mn(II) and Fe(II) concentrations. For all of the sites 

within the Central Plains area there is strong evidence for macropore cracking during the summer 

months and the bypass of the reducing soil zone by autumn recharge (TC 6) suggesting reduction of 

redox sensitive species (including TON, Mn(IV) and Fe(III)) does not occur despite reducing soil zone. 



           

 

 

Figure A 23: Diagrammatical representation of the hydrochemical evolution of freshwater within the Waimatuku Stream 
with respect to the three drivers (parent material and age, precipitation source, CRP). Pie charts represent the 
proportion of area associated with driver categories at each site. Labels detail redox state, long water type and HCA 
assignment after Daughney et al. (2015).  



           

 

Appendix G – Data 
This appendix details data used for validation of the conceptual model, i.e. stratification and 

empirical modelling.  

Links to CSV files compiling data in addition to descriptions of the datasets will be provided at a later 

stage. In the interim, the reader is welcome to contact the authors for provision of the data.  
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