
Protecting coastal lakes from eutrophication

Multiple lines of evidence converge on critical nutrient loading thresholds to maintain ecosystem health

Nick Ward¹ and Marc Schallenberg²

¹Environment Southland, Invercargill ²University of Otago, Dunedin

The system: Waituna Lagoon, South Island, New Zealand

- Latitude = 46°S; Area = 16.3 km²; Depth = 3.3 m; meso-eutrophic
- Waituna is a barrier bar lake/lagoon this is occasionally mechanically opened to drain surrounding farmland
- The lagoon and surrounding wetlands are recognised under the Ramsar convention as a site of important biodiversity, Māori food gathering and recreational values
- Waituna is one of the few coastal lagoons in New Zealand to still have a macrophyte community, dominated by the seagrass, *Ruppia* sp.
- Other similar systems have undergone catastrophic regime shifts, lost their macrophytes, and are now hypertrophic, experiencing cyanobacterial blooms

The problem: Nutrient loading threatens seagrasses

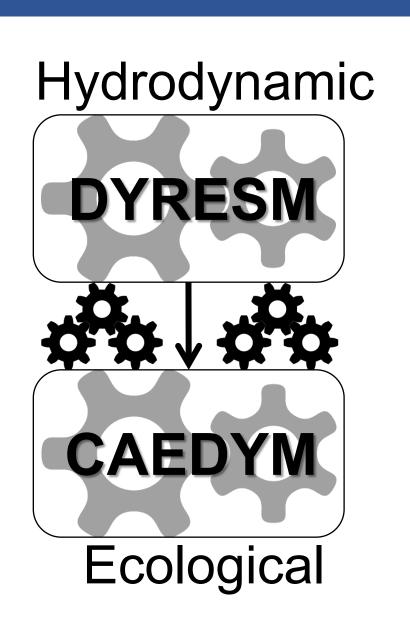
- Since 1993, dairy farming in the catchment has increased from 5% to 50% of the catchment area
- The use of nitrogenous fertilisers has increased in the catchment
- Drainage pipes in the soils allow the rapid movement of nutrients from farms into tributaries
- Peat soils of the lower catchment do not effectively bind phosphorus

The challenge: Setting nutrient load limits to safeguard *Ruppia*

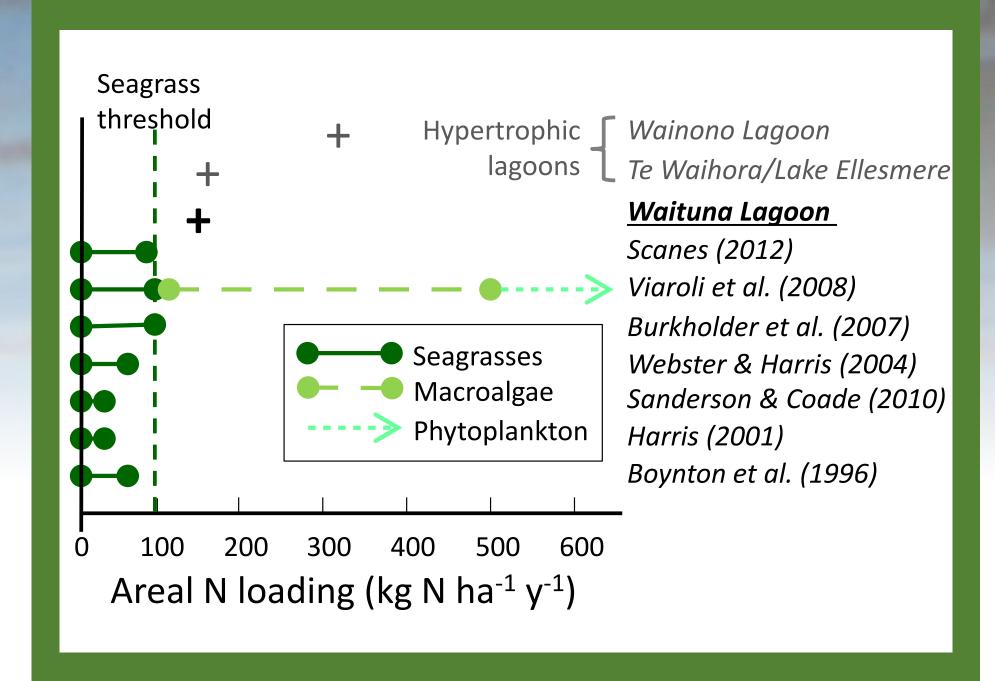
- Environment Southland set up a technical advisory group (TAG)
- The task was to determine nutrient load limit to safeguard the health of the Waituna Lagoon
- The TAG determined that the preservation of the *Ruppia* (seagrass) beds is the key to maintaining the lagoon in a good ecological condition

Three independent lines of evidence identify nutrient loading thresholds to safeguard Ruppia

1. Expert Assessment


Dr. Peter Scanes

Head of Coastal Waters Unit New South Wales Office of Environment and Heritage


- Received Waituna data
- Compared Waituna's state with that of barrier bar lakes and lagoons from New South Wales, Australia

2. Lake Model

3. Literature Review

Conclusions

- Three independent studies indicated that current N and P loads must significantly recuced to safeguard the Ruppia community and lagoon health
- The similarity of the 3 load limit estimates gave confidence that the recommended limits are robust
- The load limits formed the basis of new management guidelines for Waituna Lagoon (http://es.datacomsphere.co.nz/media/46677/waituna_lagoon_ecological_guidelines.pdf)
- Dairy conversions in the catchment are now regulated and farmers are working to reduce nutrient losses from farmland to the lagoon

The state of the s

Take home messages

- Multiple, independent lines of evidence increase robustness and help assess confidence for management decisions
- Where independent lines of evidence are not congruent and uncertainty exists, management should follow the precautionary principle and an adaptive management approach, with monitoring

Acknowledgements

This study was carried out by the Waituna Lagoon TAG: Emily Funnell and Hugh Roberston (Department of Conservation); Keith Hamill (River Lake Ltd.); David Hamilton (University of Waikato); Andy Hicks, Greg Larkin and Karen Wilson (Environment Southland); Jane Kitson and Dean Whaanga (Te Ao Mārama); Barry Robertson (Wriggle Ltd.); Mike Scarsbrook (DairyNZ); Marc Schallenberg (University of Otago). This work was funded by Environment Southland. Thanks to Ken Miller for help with poster.