

# **TECHNICAL MEMORANDUM**

| INVESTIGATION                              | Solids Characterisation                             | PROJECT     | Disposal of Solids to Land |  |
|--------------------------------------------|-----------------------------------------------------|-------------|----------------------------|--|
| CLIENT                                     | The Alliance Group<br>Limited – Lorneville<br>Plant | PROJECT NO  | A01856202                  |  |
| CLIENT CONTACT                             | Frances Wise                                        | PREPARED BY | Daryl Irvine               |  |
| CLIENT WORK<br>ORDER NO/<br>PURCHASE ORDER |                                                     | SIGNATURE   | De                         |  |
|                                            |                                                     | DATE        | 14 March 2016              |  |

#### Introduction

The Alliance Group Limited plant at Lorneville (Alliance Lorneville) has applied for new discharge to surface water consents to replace the existing discharge consent, which expires in 2016. As part of the consent application, Alliance Lorneville has also applied for consent to spread biosolids (dewatered waste activated sludge) to company owned land in the vicinity of the processing plant. As part of a request for further information, made under Section 92 to the Resource Management Act (MfE 1991), Southland Regional Council has queried: *"Are there likely to be any sources of mercury or organics in the biosolids? Are there any pathogens specific to the waste stream which may affect human health? Are there any risks of Salmonella as a result of the discharge of biosolids?"* 

Alliance Lorneville has subsequently collected a representative biosolids sample for further heavy metal, organics and microbiological testing to address these queries. In addition, Alliance Lorneville has sampled the stockyards solids for the same testing regime for completeness. This technical memorandum has been prepared by Pattle Delamore Partners to summarise the findings of the further biosolids and stockyards solids testing.

## Sampling Methodology

The consent application for disposal of biosolids to land incorporated dewatered waste activated sludge (WAS), from a proposed upgraded wastewater treatment system at the Lorneville plant. Because WAS is not currently produced from the Lorneville plant, a sample was collected from the Alliance Pukeuri plant wastewater treatment system. The Alliance Pukeuri plant incorporates similar processing systems as the Alliance Lorneville plant, with the exception of beef processing facilities and wet-blue tanning (both of which are not present at the Alliance Lorneville plant). Notwithstanding this, the WAS produced from the Alliance Pukeuri plant is considered to be representative of what would be produced from the Alliance Lorneville plant, except for chromium which could be expected to be higher for the Alliance Pukeuri WAS due to potential contribution from the wet-blue tanning process.

The following methodology was utilised for collection of the solids samples:

## Alliance Lorneville Stockyards Solids:

A composite sample of stockyards solids was collected on 18 February 2016 by Alliance staff, from a pile of stockyards solids that had recently been scraped from below the stockyards and left to stand prior to disposal. Samples were collected from several locations within the pile and mixed to form a composite sample. The sample was then sent to Hill Laboratories Limited in Christchurch for analysis. The sample was assessed as a solid sample at a Screen Level.



# TECHNICAL MEMORANDUM

## Alliance Pukeuri Waste Activated Sludge:

A liquid WAS sample was collected from the WAS tank at Alliance Pukeuri on 17 February 2016, by Alliance staff. The sample was then sent to Hill Laboratories Limited in Christchurch for analysis and was assessed as a liquid sample at a Screen Level.

## Results

The laboratory results from the stockyards and waste activated sludge analyses have been collated and attached in Appendix A. The WAS results were initially reported in units of g/m<sup>3</sup> as received, due to the sample being liquid form. For the purpose of comparing the results from the two solids samples and for assessment against guideline limits, the WAS results were converted to mg/kg dry weight, based on the measured solids content of the WAS sample (approximately 1.11% solids content). Where applicable, the results have been compared with the Guidelines for Safe Application of Biosolids to Land in New Zealand (Biosolids Guidelines) (NZWWA 2003)<sup>1</sup>.

For the assessment of microorganisms, both the stockyards and WAS samples contained elevated levels of *E. coli* and *Campylobacter* species (above Grade 'A' guideline limits) but contained less than detection levels for *Salmonella*. Due to the elevated microorganism count for *E. coli* and *Campylobacter* both waste streams can be considered to fall into Grade 'B' categorisation under the Biosolids Guidelines.

The heavy metal results for both samples were less than the Biosolids Guidelines limits for the Grade 'a' biosolids limits, with the exception of the zinc concentration in the stockyards solids, which was less than the Grade 'b' limit. The higher zinc content in the stockyards solids may be as a result of zinc related veterinary products utilised on farms. The mercury content of both solids samples were below the Screen detection limit, and less than the Biosolids Guidelines Grade 'a' limit.

Both samples were assessed against a large organic compounds suite (refer to Appendix A), with all organic compounds with Biosolids Guideline limits returning below method detection limit results. While some individual parameters had detection limits greater than the Grade 'a' limit, the detection limits were below the Grade 'b' limit of the Biosolids Guidelines. The Total PCB (sum of 35 congeners) detection limit was greater than both the Grade 'a' and 'b' limits, however, the detection limit is as a result of the sum of all 35 congeners detection limits. The individual PCB congeners were all below detection limits and below the Total PCB Grade 'a' limit.

The organic compounds testing did register above detection limit results for 3 & 4-Methylphenol (m- + p-cresol) for both solids samples. There is no limit for 3 & 4-Methylphenol (m- + p-cresol) in the Biosolids Guidelines. P-Cresol naturally occurs in sheep urine (Martin 1982) and is the likely source measured in both samples.

# Conclusions

In response to the request by Southland Regional Council under Section 92 of the RMA, for further information for the consent application from Alliance Lorneville for disposal of biosolids to land, specifically: "Are there likely to be any sources of mercury or organics in the biosolids? Are there any pathogens specific to the waste stream which may affect human health? Are there any risks of Salmonella as a result of the discharge of biosolids?", the following conclusions have been drawn:

A01856202M002.docx

<sup>&</sup>lt;sup>1</sup> Note: The Biosolids Guidelines (NZWWA 2003) Grade 'A' and 'B' limits relate to microorganism levels where as Grade 'a' and 'b' limits relate to other contaminants.



# TECHNICAL MEMORANDUM

- : There are no likely sources of mercury in the biosolids;
- There are potentially organics present in the biosolids, however, the organics present are likely to be naturally occurring organics and do not have an associated Biosolids Guideline limit;
- There are *E.coli* and *Campylobacter* micro-organism species present in the biosolids, but Salmonella was reported as being <30 MPN/L (adjusted to <675 MPN/25g dry wt). The dry weight value is based on the calculation of 30 MPN/L, however, it is likely that this is an over representation. Proposed controls will be in place for disposal of the biosolids to minimise risks to human health.

# Limitations

This report has been prepared by Pattle Delamore Partners Limited (PDP) on the basis of information provided by Alliance Group Limited and Hill Laboratories Limited. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the report. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

This report has been prepared by PDP on the specific instructions of Alliance Group Limited for the limited purposes described in the report. PDP accepts no liability if the report is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

## References

Martin AK (1982) The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br J Nutr. 1982 Nov;48(3):497-507.

MfE (1991) Resource Management Act, Ministry for the Environment, New Zealand.

NZWWA (2003), *Guidelines for the Safe Application of Biosolids to Land in New Zealand*, New Zealand Water and Waste Association and Ministry for the Environment.





# **APPENDIX A:**

# ALLIANCE LORNEVILLE SOLIDS ANALYSIS

| Data Set:    | Alliance Lorneville Solids Analysis         |  |  |  |
|--------------|---------------------------------------------|--|--|--|
| Recorded by: | D. Irvine, Pattle Delamore Partners Limited |  |  |  |
| Job Number   | A01856202                                   |  |  |  |

| Sample Name:                                        |                  | Lorneville Stock Yards | Pukeuri WAS | NZWWA Biosolids G  | uidelines Limits |
|-----------------------------------------------------|------------------|------------------------|-------------|--------------------|------------------|
| Sample Date:                                        |                  | 18-Feb-16              | 17-Feb-16   | NZW WA Diosolius G | didennes Emiles  |
| Laboratory Number:                                  |                  | 1540028                | 1539459     |                    |                  |
| Parameter:                                          | Units            |                        |             | Grade A or a       | Grade B or b     |
| Dry Matter                                          | g/100g as rcvd   | 14.7                   | 1.11        |                    |                  |
| Escherichia coli                                    | MPN / g          | > 16000                | > 14414     | 100                | Not applicable   |
| Salmonella                                          | MPN /25g dry wt  | < 75                   | < 676       | 1                  | Not applicable   |
| Campylobacter species                               | MPN / 25g dry wt | > 27500                | < 676       | 1                  | Not applicable   |
| Metals extensive suite, screen level (33 metals)    |                  |                        |             |                    |                  |
| Total Recoverable Aluminium                         | mg/kg dry wt     | 5200                   | 1559        |                    |                  |
| Total Recoverable Antimony                          | mg/kg dry wt     | < 0.8                  | < 0.378     |                    |                  |
| Total Recoverable Arsenic                           | mg/kg dry wt     | < 4                    | < 1.892     | 20                 | 30               |
| Total Recoverable Barium                            | mg/kg dry wt     | 60                     | 27.027      |                    |                  |
| Total Recoverable Bismuth                           | mg/kg dry wt     | < 0.8                  | < 0.189     |                    |                  |
| Total Recoverable Boron                             | mg/kg dry wt     | < 40                   | 106.306     |                    |                  |
| Total Recoverable Cadmium                           | mg/kg dry wt     | 0.3                    | 0.180       | 1                  | 10               |
| Total Recoverable Caesium                           | mg/kg dry wt     | < 0.4                  | 0.234       |                    |                  |
| Total Recoverable Calcium                           | mg/kg dry wt     | 17800                  | 19820       |                    |                  |
| Total Recoverable Chromium                          | mg/kg dry wt     | 12                     | 23.4        | 600                | 1500             |
| Total Recoverable Cobalt                            | mg/kg dry wt     | 2.7                    | 0.856       |                    |                  |
| Total Recoverable Copper                            | mg/kg dry wt     | 20                     | 36.0        | 100                | 1250             |
| Total Recoverable Iron                              | mg/kg dry wt     | 10700                  | 2342        |                    |                  |
| Total Recoverable Lanthanum                         | mg/kg dry wt     | 2.6                    | 1.12        |                    |                  |
| Total Recoverable Lead                              | mg/kg dry wt     | 6.4                    | 3.60        | 300                | 300              |
| Total Recoverable Lithium                           | mg/kg dry wt     | 4.5                    | 1.57        |                    |                  |
| Total Recoverable Magnesium                         | mg/kg dry wt     | 4300                   | 1982        |                    |                  |
| Total Recoverable Manganese                         | mg/kg dry wt     | 580                    | 168         |                    |                  |
| Total Recoverable Mercury                           | mg/kg dry wt     | < 0.2                  | < 0.189     | 1                  | 7.5              |
| Total Recoverable Molybdenum                        | mg/kg dry wt     | 2.5                    | 1.98        |                    |                  |
| Total Recoverable Nickel                            | mg/kg dry wt     | 7                      | 3.87        | 60                 | 135              |
| Total Recoverable Phosphorus                        | mg/kg dry wt     | 5800                   |             |                    |                  |
| Total Recoverable Potassium                         | mg/kg dry wt     | 6800                   | 9279        |                    |                  |
| Total Recoverable Rubidium                          | mg/kg dry wt     | 22                     | 17.7        |                    |                  |
| Total Recoverable Selenium                          | mg/kg dry wt     | < 40                   | < 1.89      |                    |                  |
| Total Recoverable Silver                            | mg/kg dry wt     | < 0.8                  | < 0.198     |                    |                  |
| Total Recoverable Sodium                            | mg/kg dry wt     | 1550                   | 48649       |                    |                  |
| Total Recoverable Strontium                         | mg/kg dry wt     | 140                    | 44.1        |                    |                  |
| Total Recoverable Thallium                          | mg/kg dry wt     | < 0.4                  | < 0.099     |                    |                  |
| Total Recoverable Tin                               | mg/kg dry wt     | < 2                    | < 0.991     |                    |                  |
| Total Recoverable Uranium                           | mg/kg dry wt     | < 0.2                  | 0.216       |                    |                  |
| Total Recoverable Vanadium                          | mg/kg dry wt     | < 200                  | 6.31        |                    |                  |
| Total Recoverable Zinc                              | mg/kg dry wt     | 480                    | 243         | 300                | 1500             |
| Organochlorine Pesticides Screening in Soil         |                  |                        |             |                    |                  |
| Aldrin                                              | mg/kg dry wt     | < 0.1                  | < 0.009     | 0.02               | 0.2              |
| alpha-BHC                                           | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| beta-BHC                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| delta-BHC                                           | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| gamma-BHC (Lindane)                                 | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| cis-Chlordane                                       | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| trans-Chlordane                                     | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| Total Chlordane [(cis+trans)*100/42]                | mg/kg dry wt     | < 0.2                  | < 0.018     | 0.02               | 0.2              |
| 2,4'-DDD                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| 4,4'-DDD                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| 2,4'-DDE                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| 4,4'-DDE                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| 2,4'-DDT                                            | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| 4,4'-DDT                                            | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| Total DDT Isomers                                   | mg/kg dry wt     | < 0.6                  |             |                    |                  |
| Dieldrin                                            | mg/kg dry wt     | < 0.1                  | < 0.009     | 0.02               | 0.2              |
| Endosulfan I                                        | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| Endosulfan II                                       | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| Endosulfan sulphate                                 | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| Endrin                                              | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| Endrin aldehyde                                     | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| Endrin ketone                                       | mg/kg dry wt     | < 0.1                  | < 0.018     |                    |                  |
| Heptachlor                                          | mg/kg dry wt     | < 0.1                  | < 0.009     | 0.02               | 0.2              |
| Heptachlor epoxide                                  | mg/kg dry wt     | < 0.1                  | < 0.009     | 0.02               | 0.2              |
| Hexachlorobenzene                                   | mg/kg dry wt     | < 0.1                  | < 0.072     | 0.02               | 0.2              |
| Methoxychlor                                        | mg/kg dry wt     | < 0.1                  | < 0.009     |                    |                  |
| Organonitro&phosphorus Pesticides Screen in Soil by |                  |                        |             |                    |                  |
| Acetochlor                                          | mg/kg            | < 0.4                  | < 0.180     |                    |                  |
| Alachlor                                            | mg/kg            | < 0.18                 | < 0.090     |                    |                  |
| Atrazine                                            | mg/kg            | < 0.4                  | < 0.180     |                    |                  |
| Atrazine-desethyl                                   | mg/kg            | < 0.4                  | < 0.180     |                    |                  |
| Atrazine-desisopropyl                               | mg/kg            | < 0.7                  | < 0.360     |                    |                  |

| Azaconazole                                       | mg/kg        | < 0.18 | < 0.090 |  |
|---------------------------------------------------|--------------|--------|---------|--|
| Azinphos-methyl                                   | mg/kg        | < 1.8  | < 0.360 |  |
| Benalaxyl                                         | mg/kg        | < 0.18 | < 0.090 |  |
| Bitertanol                                        | mg/kg        | < 0.7  | < 0.360 |  |
| Bromacil                                          | mg/kg        | < 0.4  | < 0.180 |  |
|                                                   |              |        |         |  |
| Bromopropylate                                    | mg/kg        |        |         |  |
| Butachlor                                         | mg/kg        | < 0.4  | < 0.180 |  |
| Captan                                            | mg/kg        | < 0.7  | < 0.360 |  |
| Carbaryl                                          | mg/kg        | < 0.4  | < 0.180 |  |
| Carbofuran                                        | mg/kg        | < 0.4  | < 0.180 |  |
| Chlorfluazuron                                    | mg/kg        | < 0.4  | < 0.180 |  |
| Chlorothalonil                                    | mg/kg        | < 0.4  | < 0.180 |  |
| Chlorpyrifos                                      | mg/kg        | < 0.4  | < 0.180 |  |
|                                                   |              |        |         |  |
| Chlorpyrifos-methyl                               | mg/kg        | < 0.4  | < 0.180 |  |
| Chlortoluron                                      | mg/kg        | < 0.7  | < 0.360 |  |
| Cyanazine                                         | mg/kg        | < 0.4  | < 0.180 |  |
| Cyfluthrin                                        | mg/kg        | < 0.5  | < 0.270 |  |
| Cyhalothrin                                       | mg/kg        | < 0.4  | < 0.180 |  |
| Cypermethrin                                      | mg/kg        | < 0.9  | < 0.450 |  |
|                                                   |              |        |         |  |
| Deltamethrin (including Tralomethrin)             | mg/kg        | < 0.7  | < 0.180 |  |
| Diazinon                                          | mg/kg        | < 0.18 | < 0.090 |  |
| Dichlofluanid                                     | mg/kg        | < 0.4  | < 0.180 |  |
| Dichloran                                         | mg/kg        | < 0.9  | < 0.450 |  |
| Dichlorvos                                        | mg/kg        | < 0.4  | < 0.180 |  |
| Difenoconazole                                    | mg/kg        | < 0.5  | < 0.270 |  |
| Dimethoate                                        | mg/kg        | < 0.7  | < 0.360 |  |
| Diphenylamine                                     | mg/kg        | < 0.7  | < 0.360 |  |
| • •                                               |              |        |         |  |
| Diuron                                            | mg/kg        | < 0.4  | < 0.180 |  |
| Fenpropimorph                                     | mg/kg        | < 0.4  | < 0.180 |  |
| Fluazifop-butyl                                   | mg/kg        | < 0.4  | < 0.180 |  |
| Fluometuron                                       | mg/kg        | < 0.4  | < 0.180 |  |
| Flusilazole                                       | mg/kg        | < 0.4  | < 0.180 |  |
| Fluvalinate                                       | mg/kg        | < 0.3  | < 0.135 |  |
| Furalaxyl                                         | mg/kg        | < 0.18 | < 0.090 |  |
|                                                   |              |        |         |  |
| Haloxyfop-methyl                                  | mg/kg        |        | < 0.180 |  |
| Hexaconazole                                      | mg/kg        | < 0.4  | < 0.180 |  |
| Hexazinone                                        | mg/kg        | < 0.18 | < 0.090 |  |
| IPBC (3-Iodo-2-propynyl-n-butylcarbamate)         | mg/kg dry wt | < 1.8  | < 0.901 |  |
| Kresoxim-methyl                                   | mg/kg        | < 0.18 | < 0.090 |  |
| Linuron                                           | mg/kg        | < 0.7  | < 0.180 |  |
| Malathion                                         | mg/kg        | < 0.4  | < 0.180 |  |
| Metalaxyl (Mefenoxam)                             | mg/kg        | < 0.4  | < 0.180 |  |
| Methamidophos                                     | mg/kg        | < 1.8  | 0.100   |  |
|                                                   |              |        |         |  |
| Metolachlor                                       | mg/kg        | < 0.18 | < 0.090 |  |
| Metribuzin                                        | mg/kg        | < 0.4  | < 0.180 |  |
| Molinate                                          | mg/kg        | < 0.7  | < 0.360 |  |
| Myclobutanil                                      | mg/kg        | < 0.4  | < 0.180 |  |
| Naled                                             | mg/kg        | < 1.8  | < 0.901 |  |
| Norflurazon                                       | mg/kg        | < 0.7  | < 0.360 |  |
| Oxadiazon                                         | mg/kg        | < 0.4  | < 0.180 |  |
| Oxyfluorfen                                       | mg/kg        | < 0.18 | < 0.090 |  |
| Paclobutrazol                                     | mg/kg        | < 0.4  | < 0.180 |  |
| Parathion-ethyl                                   | mg/kg        | < 0.4  | < 0.180 |  |
|                                                   |              |        |         |  |
| Parathion-methyl                                  | mg/kg        | < 0.4  | < 0.180 |  |
| Pendimethalin                                     | mg/kg        | < 0.4  | < 0.180 |  |
| Permethrin                                        | mg/kg        | < 0.1  | < 0.054 |  |
| Pirimicarb                                        | mg/kg        | < 0.4  | < 0.180 |  |
| Pirimiphos-methyl                                 | mg/kg        | < 0.4  | < 0.180 |  |
| Prochloraz                                        | mg/kg        | < 1.8  | < 0.901 |  |
| Procymidone                                       | mg/kg        | < 0.4  | < 0.180 |  |
| Prometryn                                         | mg/kg        | < 0.18 | < 0.090 |  |
| Propachlor                                        | mg/kg        | < 0.18 | < 0.180 |  |
|                                                   |              |        |         |  |
| Propanil                                          | mg/kg        | < 0.7  | < 0.360 |  |
| Propazine                                         | mg/kg        | < 0.18 | < 0.090 |  |
| Propiconazole                                     | mg/kg        | < 0.3  | < 0.135 |  |
| Pyriproxyfen                                      | mg/kg        | < 0.4  | < 0.180 |  |
| Quizalofop-ethyl                                  | mg/kg        | < 0.4  | < 0.180 |  |
| Simazine                                          | mg/kg        | < 0.4  | < 0.180 |  |
| Simetryn                                          | mg/kg        | < 0.4  | < 0.180 |  |
| Sulfentrazone                                     | mg/kg        | < 1.8  | < 0.901 |  |
| TCMTB [2-(thiocyanomethylthio)benzothiazole,Busan |              | < 1.8  | < 0.360 |  |
| Tebuconazole                                      |              |        | < 0.180 |  |
|                                                   | mg/kg        |        |         |  |
| Terbacil                                          | mg/kg        | < 0.4  | < 0.180 |  |
| Terbufos                                          | mg/kg        | < 0.4  | < 0.180 |  |
| Terbumeton                                        | mg/kg        | < 0.4  | < 0.180 |  |
| Terbuthylazine                                    | mg/kg        | < 0.18 | < 0.090 |  |
| Terbuthylazine-desethyl                           | mg/kg        | < 0.4  | < 0.180 |  |
| Terbutryn                                         | mg/kg        | < 0.4  | < 0.180 |  |
| Thiabendazole                                     | mg/kg        | < 1.8  | < 0.901 |  |
| Thiobencarb                                       | mg/kg        | < 0.4  | < 0.180 |  |
|                                                   | 0, 0         |        | 5.200   |  |

| Tolylfluanid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| Triazophos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| Trifluralin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| Vinclozolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| Polychlorinated Biphenyls Screening in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
| PCB-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
| PCB-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
| PCB-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
| PCB-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-150<br>PCB-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
| PCB-167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| PCB-209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |
| Total PCB (Sum of 35 congeners)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02 | 0.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 1.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02 | 0.2 |
| Pentachlorophenol Screening in Soil by LCMSMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02 | 0.2 |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02 | 0.2 |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02 | 0.2 |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.027<br>< 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 | 0.2 |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.027<br>< 0.027<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.027<br>< 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.027<br>< 0.027<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chlorophenyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 4<br>< 4<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chlorophenyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chlorophenyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GO                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Bromophenyl phenyl ether<br>A-Bromophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin                                                                                                                                                                                                                                                                                                                                                       | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>c-MS<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0.905<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC                                                                                                                                                                                                                                                                                                                                                                      | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0.905<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodin-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC                                                                                                                                                                                                                                                                                                                                                                     | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0.450<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>c-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD                                                                                                                                                                                                                                                                                   | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>c-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD                                                                                                                                                                                                                                                                                   | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>c-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDE                                                                                                                                                                                                                                                                       | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ \\ < & 0.450 \\ \\ \\ \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chlorophenyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDE<br>4,4'-DDT                                                                                                                                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ \\ < & 0.901 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ < & 0.450 \\ \\ \\ \\ < & 0.450 \\ \\ \\ \\ \\ \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I                                                                                                                                                                                                                                                                                                                             | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 2<br>< 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.901 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.450 \\ \\ < & 0.901 \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I                                                                                                                                                                                                                                                                                                           | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.1<br>< 0.1<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4<br>< 4<br>< 4<br>< 4<br>< 2<br>< 4<br>< 2<br>< 4<br>< 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDE<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Endosulfan sulphate                                                                                                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> </ul>                                                                                                                                                                                                                                                                                                                 | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDE<br>4,4'-DDE<br>4,4'-DDT<br>Dieldrin<br>Endosulfan II<br>Endosulfan II<br>Endosulfan sulphate<br>Endrin                                                                                                                                                                                                                   | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> </ul>                                                                                                                                                                                                                                                                                                                 | < 0.027<br>< 0.027<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.450<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.901<br>< 0.450<br>< 0.901<br>< 0 | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan II<br>Endosulfan II<br>Endosulfan sulphate<br>Endrin                                                                                                                                                                                                                  | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> </ul>                                                                                                                                                                 | <ul> <li>&lt; 0.027</li> <li>&lt; 0.027</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor                                                                                                                                              | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 2</li> </ul>                                                                                                                                                                 | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 $                                                                                                                                                                                                                                                                                  | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>Nitrobenzene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDE<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor                                                                                                                                               | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 2</li> </ul> | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodiphenylamine<br>N-Nitrosodiphenylamine<br>N-Nitrosodiphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDE<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor<br>Heptachlor poxide<br>Hexachlorobenzene                                                                                                                                        | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 2</li> </ul>                                                                                                                                                                 | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 $                                                                                                                                                                                                                                                                                  | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodin-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor<br>Heptachlor epoxide<br>Hexachlorobenzene<br>Polycyclic Aromatic Hydrocarbons in SVOC Soil Sampl                                                                                                                         | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 $                                                                                                                                                                                                                                                                                  | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodin-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDE<br>4,4'-DDE<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor epoxide<br>Hexachlorobenzene                                                                                                                                                                                   | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 2</li> </ul> | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodin-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor<br>Heptachlor epoxide<br>Hexachlorobenzene<br>Polycyclic Aromatic Hydrocarbons in SVOC Soil Sampl                                                                                                                         | mg/kg dry wt<br>mg/kg dry wt               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{cccc} & 0.027 \\ < & 0.027 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.901 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 \\ < & 0.450 $                                                                                                                                                                                                                                                                                  | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan II<br>Endosulfan II<br>Endosulfan II<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor epoxide<br>Hexachlorobenzene<br>Polycyclic Aromatic Hydrocarbons in SVOC Soil Sampl                                                                                                                                          | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 1</li> </ul>                 | <ul> <li>&lt; 0.027</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>Bis(2-chloroisopropyl)ether<br>4-Bromophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDT<br>JDieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor<br>Heptachlor epoxide<br>Hexachlorobenzene<br>Polycyclic Aromatic Hydrocarbons in SVOC Soil Sampl<br>Acenaphthene                                                           | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 1</li> </ul>                                                                                                                               | <ul> <li>&lt; 0.027</li> <li>&lt; 0.027</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.270</li> <li>&lt; 0.270</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02 |     |
| Pentachlorophenol Screening in Soil by LCMSMS<br>Pentachlorophenol (PCP)<br>2,3,4,6-Tetrachlorophenol (TCP)<br>Haloethers in SVOC Soil Samples by GC-MS<br>Bis(2-chloroethoxy) methane<br>Bis(2-chloroethyl)ether<br>4-Bromophenyl phenyl ether<br>4-Bromophenyl phenyl ether<br>A-Chlorophenyl phenyl ether<br>Nitrogen containing compounds in SVOC Soil Sample<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>N-Nitrosodi-n-propylamine<br>N-Nitrosodiphenylamine + Diphenylamine<br>Organochlorine Pesticides in SVOC Soil Samples by GC<br>Aldrin<br>alpha-BHC<br>beta-BHC<br>delta-BHC<br>gamma-BHC (Lindane)<br>4,4'-DDD<br>4,4'-DDD<br>4,4'-DDT<br>Dieldrin<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan I<br>Endosulfan sulphate<br>Endrin<br>Endrin ketone<br>Heptachlor<br>Heptachlor epoxide<br>Hexachlorobenzene<br>Polycyclic Aromatic Hydrocarbons in SVOC Soil Sampl<br>Acenaphthylene<br>Anthracene | mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>mg/kg dry wt<br>s by GC-MS<br>mg/kg dry wt<br>mg/kg dry wt                                                                                                                 | <ul> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 0.1</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 4</li> <li>&lt; 2</li> <li>&lt; 4</li> <li>&lt; 1</li> </ul>                                                                                                                                                               | <ul> <li>&lt; 0.027</li> <li>&lt; 0.027</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.901</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.450</li> <li>&lt; 0.270</li> <li>&lt; 0.270</li> <li>&lt; 0.270</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02 |     |

| Benzo[b]fluoranthene + Benzo[j]fluoranthene mg/kg dry wt       <       2       <       0.270         Benzo[g,h,i]perylene mg/kg dry wt       <       2       <       0.270         Benzo[k]fluoranthene mg/kg dry wt       <       2       <       0.270         Benzo[k]fluoranthene mg/kg dry wt       <       1       <       0.270         1&2-Chloronaphthalene mg/kg dry wt       <       1       <       0.270         Chrysene mg/kg dry wt       <       1       <       0.270         Fluoranthene mg/kg dry wt       <       1       <       0.270         Fluoranthene mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1        0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1        0.270         Phenathrene       mg/kg dry wt       <       1        0.270         Phenathrene       mg/kg dry wt       <       1        0.270         Phenols in S           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Benzolk/filuoranthene       mg/kg dry wt       <       2       0.270         1&2-Chloronaphthalene       mg/kg dry wt       <       1       <       0.270         Chrysene       mg/kg dry wt       <       1       <       0.270         Dibenzo[a,h]anthracene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1       <       0.270         Phenathrene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Phenathrene       mg/kg dry wt       <       1        0.270         Phenols in SVOC Soil Samples by GC-MS       -       -       0.270       -         2-Chlorophenol       mg/kg dry wt       <       5         |  |
| 1&2-Chloronaphthalenemg/kg dry wt<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Chrysene       mg/kg dry wt       <       1       <       0.270         Dibenzo[a,h]anthracene       mg/kg dry wt       <       2       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluorene       mg/kg dry wt       <       1       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1       <       0.270         2-Methylnaphthalene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Phenanthrene       mg/kg dry wt       <       1       <       0.270         Phenost in SVOC Soil Samples by GC-MS        1       <       0.270         Phenols in SVOC Soil Samples by GC-MS         1        0.270         Phenols in SVOC Soil Samples by GC-MS          0.270         2-Chlorophenol       mg/kg dry wt       <       5        0.901         2-Chlorophenol       mg/kg dry wt       <       5        0.450         2,4-Dichlorophenol       mg/kg dry wt        3 <th></th>                                                  |  |
| Dibenzo[a,h]anthracene       mg/kg dry wt       <       2       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluorene       mg/kg dry wt       <       1       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1       <       0.270         2-Methylnaphthalene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Phenanthrene       mg/kg dry wt       <       1       <       0.270         Pyrene       mg/kg dry wt       <       1       <       0.270         Phenols in SVOC Soil Samples by GC-MS          0.270         2-Chlorophenol       mg/kg dry wt       <       5       <       0.901         2-Chlorophenol       mg/kg dry wt       <       2       <                                 |  |
| Fluoranthene       mg/kg dry wt       <       1       <       0.270         Fluorene       mg/kg dry wt       <       1       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       2       <       0.270         Indeno(1,2,3-c,d)pyrene       mg/kg dry wt       <       1       <       0.270         2-Methylnaphthalene       mg/kg dry wt       <       1       <       0.270         Naphthalene       mg/kg dry wt       <       1       <       0.270         Phenanthrene       mg/kg dry wt       <       1       <       0.270         Pyrene       mg/kg dry wt       <       1       <       0.270         Phenols in SVOC Soil Samples by GC-MS          0.270         2-Chloro-3-methylphenol       mg/kg dry wt       <       5       <       0.901         2-Chlorophenol       mg/kg dry wt       <       5       <       0.901         2,4-Dichlorophenol       mg/kg dry wt       <       2        0.450         2,4-Dimethylphenol       mg/kg dry wt       <       3       <       0.450         3 & 4-Methylphenol (m- + p-cresol)       mg/kg dry wt                  |  |
| Fluorene       mg/kg dry wt       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Indeno(1,2,3-c,d)pyrenemg/kg dry wt<2<0.2702-Methylnaphthalenemg/kg dry wt<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2-Methylnaphthalenemg/kg dry wt<10.270Naphthalenemg/kg dry wt<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Naphthalene       mg/kg dry wt       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Phenanthrene       mg/kg dry wt       <       1       <       0.270         Pyrene       mg/kg dry wt       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Pyrene         mg/kg dry wt         <         1         <         0.270           Phenols in SVOC Soil Samples by GC-MS         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |  |
| Phenols in SVOC Soil Samples by GC-MS4-Chloro-3-methylphenolmg/kg dry wt< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4-Chloro-3-methylphenol       mg/kg dry wt       < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2-Chlorophenol         mg/kg dry wt         <         2         <         0.450           2,4-Dichlorophenol         mg/kg dry wt         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Z4-Dichlorophenol         mg/kg dry wt         < 2         < 0.450           2,4-Dimethylphenol         mg/kg dry wt         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2,4-Dimethylphenolmg/kg dry wt< 3< 0.4503 & 4-Methylphenol (m- + p-cresol)mg/kg dry wt1312.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3 & 4-Methylphenol (m- + p-cresol) mg/kg dry wt 131 2.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2-Methylphenol (o-Cresol) mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2-Nitrophenol mg/kg dry wt < 5 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Pentachlorophenol (PCP) mg/kg dry wt < 40 < 9.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Phenol mg/kg dry wt < 4 9.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2,4,5-Trichlorophenol mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2,4,6-Trichlorophenol mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Plasticisers in SVOC Soil Samples by GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Bis(2-ethylhexyl)phthalate mg/kg dry wt < 8 < 2.703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Butylbenzylphthalate mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Di(2-ethylhexyl)adipate mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Diethylphthalate mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Dimethylphthalate mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Di-n-butylphthalate mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Di-n-octylphthalate mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Other Halogenated compounds in SVOC Soil Samples by GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1,2-Dichlorobenzene mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1,3-Dichlorobenzene mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1,4-Dichlorobenzene mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Hexachlorobutadiene mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Hexachloroethane mg/kg dry wt < 4 < 0.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1,2,4-Trichlorobenzene mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Other compounds in SVOC Soil Samples by GC-MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Benzyl alcohol mg/kg dry wt < 20 < 4.505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Carbazole mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Dibenzofuran mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Isophorone mg/kg dry wt < 2 < 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Tributyl Tin Trace in Soil samples by GCMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Dibutyltin (as Sn) mg/kg dry wt < 0.03 < 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Monobutyltin (as Sn) mg/kg dry wt < 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tributyltin (as Sn)         mg/kg dry wt         < 0.017         < 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Triphenyltin (as Sn)         mg/kg dry wt         < 0.014         < 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |