Cawthron Report No. 941

Broad Scale Intertidal Habitat Mapping of Awarua Bay

Prepared for

August 2004

Broad Scale Intertidal Habitat Mapping of Awarua Bay

Prepared for

by

Barry Robertson, Leigh Stevens, Stephanie Thompson, and Ben Robertson

Cawthron Institute 98 Halifax Street East Private Bag 2 NELSON NEW ZEALAND

Phone: +64.3.548.2319 Fax: +64.3.546.9464 Email: info@cawthron.org.nz

Information contained in this report may not be used without the prior consent of the client

Cover photo: Awarua Bay (Environment Southland)

1.	INTRODUCTION	1
2.	METHODS	1
2.1	Overview	1
2.2	Colour aerial photography	2
2.3	Ground-truthing of habitat features Digitisation of habitat boundaries	2
2.4	Digitisation of habitat boundaries	2
3.	CLASSIFICATION AND DEFINITIONS OF HABITAT TYPES	3
3.1	Classification of habitat features	3
3.2	Habitat codes and terminology	3
3.3	Definitions of classification Level III Structural Class	5
4.	RESULTS	6
5.	OVERVIEW	13
6.	COMBINED SUMMARY OF BLUFF HARBOUR AND AWARUA BAY	13
7.	ACKNOWLEDGEMENTS	15
8.	REFERENCES	15

LIST OF FIGURES

Figure 1 The area of structural class habitats (based on dominant cover) in Awarua Bay	6
Figure 2 Broad structural habitat of Awarua Bay, April 2004	7
Figure 3 Colour legend and species codes for the habitat and substrate complexes identified in Awarua Bay	
Figure 4 Detail of the dominant habitat cover within the Awarua Bay, April 2004	9

LIST OF TABLES

Table 1 Classification of estuarine habitat types in Awarua Bay, April 2004.	4
Table 2 The area (Ha and %) of major habitats within Awarua Bay, April 2004.	
Table 3 Areas of dominant unvegetated substrata, and primary subdominant cover in Awarua Bay, April 2004	10
Table 4 Area of dominant estuarine vegetation within Awarua Bay, April 2004	11
Table 5 Areas of dominant terrestrial vegetation mapped adjacent to Awarua Bay, April 2004.	12
Table 6 Summary of combined results for Bluff Harbour and Awarua Bay, April 2004.	

B.M. Roberto

1. INTRODUCTION

Estuarine intertidal areas play an important role in the nourishment of coastal ecosystems, linking terrestrial and marine environments and often encompassing high value ecological habitats and resources of cultural, recreational and/or commercial importance. Environment Southland (ES) are monitoring a number of estuaries in their region and the Cawthron Institute (Cawthron) has previously undertaken both broad and fine scale habitat mapping and assessment of estuaries in the Southland region (*e.g.* Jacobs River, New River, Mataura) to assist in regional strategic planning, and in the management of specific issues associated with estuarine habitat (*e.g.* resource consents, pollution, and state of the environment monitoring).

To further extend the spatial coverage of the estuaries being monitored, ES and Cawthron recently undertook broad scale mapping of the intertidal substrate and habitat complexes present in Waikawa Estuary (Robertson *et. al* 2004a) and Bluff Harbour (Robertson *et. al* 2004b), and subtidal mapping of Bluff Harbour (Stevens and Clark 2004). This report summarises the results of a detailed point-in-time, spatial survey of major habitats in the intertidal regions of Awarua Bay, the estuary arm that extends east from Bluff Harbour. This report includes the following components:

- A CD-ROM containing the completed habitat maps (titled "*Broad Scale Intertidal Habitat Mapping: Awarua Bay*").
- A summary report (this document) which includes:
 - o a methodology outline.
 - o a map showing the broad scale habitats present (*e.g.* Rushland, Tussockland).
 - o a map representing the pattern of dominant cover (*e.g. Leptocarpus similis*).
 - a summary table of major habitats and substrates within the estuary, providing the area and relative proportions of each grouping.
 - o a brief summary of results for Awarua Bay.
 - o a combined summary of results for Bluff Harbour and Awarua Bay.

2. METHODS

2.1 Overview

The methodology used to collect data was based on the National Estuary Monitoring Protocol (Robertson *et al.* 2002) which uses field-verified broad scale mapping of habitat zones. This

procedure involves the use of aerial photography together with detailed ground-truthing and digital mapping using Geographical Information System (GIS) technology. The broad scale habitat mapping approach provides a description of the intertidal environment according to dominant habitat types based on substrate characteristics (mud, sand, cobble, rock, shellfish beds, *etc*) and the vegetation present (*e.g.* rushes, tussocks, eelgrass, seaweed, *etc*), in order to develop a baseline map of the estuary. Once a baseline map has been constructed, changes in the position and/or size of habitats (MfE Confirmed Indicators for the Marine Environment, ME6 2001) can be assessed by repeating the mapping exercise. This information can then be used to evaluate the implications of natural perturbations such as flood/climate events and human impacts such as land management practices (and related river water quantity and quality) on the structure and function of the intertidal ecosystem.

2.2 Colour aerial photography

Aerial photographs of Bluff Harbour and Awarua Bay were taken on 14 August 1996 by Les McGraw (ES) and provided to us as rectified tiff files at a scale of 1:9,500.

2.3 Ground-truthing of habitat features

Aerial photographs, through different textural and tonal patterns, indicate the presence of different substrate types and their spatial extents. To identify the dominant habitat present, and confirm the boundaries between substrates, an experienced estuarine scientist (Cawthron) supported by ES staff walked over the whole estuary at low-mid tide during April 2004. Dominant habitat types, including various categories of bare and vegetated substrate were recorded directly onto laminated aerial photographs (scale 1:5,000 to 1:10,000) using the codes listed in Table 1. The upper boundary was set at MHWS (Mean High Water Spring), unless supra-littoral habitat was considered integral with the upper intertidal, in which case it was included. The lower boundary was set at MLWS (Mean Low Water Spring). Some terrestrial vegetation was also mapped to indicate where shrub, scrub, and forest areas were present around the edge of the estuary.

2.4 Digitisation of habitat boundaries

Vegetation and substrate features were then digitally mapped on-screen from the rectified photographs using Arcmap 8.3 GIS software. This procedure involved copying, as precisely as possible, the habitat features recorded on aerial photographs during the field surveys onto rectified aerial photographs within the GIS. Each drawing was then saved to a shape file (or GIS layer)

associated with each specific feature. The software was then used to produce maps and calculate the area cover for each habitat type.

3. CLASSIFICATION AND DEFINITIONS OF HABITAT TYPES

3.1 Classification of habitat features

The classification of substrate and habitat features has been based on the proposed estuarine national classification system (with adaptations), which was developed under a Ministry for the Environment SMF (Sustainable Management Fund) programme (Monitoring Changes in Wetland Extent: An Environmental Performance Indicator for Wetlands) by Lincoln Environmental, Lincoln. The classification system for wetland types is based on the Atkinson System (Atkinson 1985) and covers four levels, ranging from broad to fine scale. The broad scale mapping focuses on Levels III and IV (see Table 1). Substrate classification is based on surface layers only and does not consider underlying substrate; *e.g.* gravel fields covered by sand would be classed as sand. A list of all the classification types used in the study and their codes are given in Table 1, with definitions for classification of the Level III structural class provided in Section 3.3.

3.2 Habitat codes and terminology

Dominant biota with a spatial coverage of >2m in diameter has been classified using an interpretation of the Atkinson (1985) system. In this report biota and substratum are listed in order of dominance as described below:

- Individual plant species are coded using the two first letters of their Latin species and genus names *e.g.* Pldi = *Plagianthus divaricatus* (ribbonwood), Lesi = *Leptocarpus similis* (jointed wire rush).
- _ is used to indicate subdominant species *e.g.* Lesi_Pldi = Pldi is subdominant to Lesi. The classification is based on the subjective observation of which vegetation is the dominant or subdominant species within the patch, and not on percentage cover.
- Shape files in the GIS have been labelled in the same manner as that described above.

Table 1 Classification of estuarine habitat types in Awarua Bay, April 2004.

Level I Hydrosystem	Level IA SubSystem	Level II Class	Level III Structural Class	Level IV Dominant Cover	Habitat Code
Estuary (alternating	Intertidal/ supratidal	Saltmarsh	Shrub/Scrub/Forest	Gaultheria sp., "Snowberry" Leptospermum scoparium, "Manuka"	Gasp Lesc
saline and	supranaan			Pinus radiata, "Pine tree"	Pira
freshwater)				Podocarpus totara, "Totara"	Poto
neshwater)				Pteridium esculentum, "Bracken fern"	Ptes
					Pldi
				<i>Plagianthus divaricatus</i> , "Saltmarsh ribbonwood"	
				Ulex europaeus, "Gorse"	Uleu
			Estuarine Shrubland	Plagianthus divaricatus, "Saltmarsh ribbonwood"	Pldi
			Tussockland	Carex sp.	Casp
				Chionochloa rubra, Red Tussock	Chru
				Phormium tenax, "New Zealand flax"	Phte
				Poa cita, "Silver tussock"	Poci
			Grassland	Ammophila arenaria, "Marram grass'	Amar
				Festuca arundinacea, "Tall fescue"	Fear
			Sedgeland	Isolepis cernua, "Slender clubrush"	Isce
			Rushland	Isolepis nodosa, "Knobby clubrush"	Isno
			Rusmand	Leptocarpus similis, "Jointed wirerush"	Lesi
				Leptocarpus similits, Jointed wirerusii	LLSI
			Herbfield	Cotula coronopifolia, "Bachelor's button"	Coco
				Disphyma australe, "NZ Ice Plant"	Diau
				Samolus repens, "Primrose"	Sare
				Sarcocornia quinqueflora, "Glasswort"	Saqu
				Selliera radicans, "Remuremu"	Sera
			Introduced weeds	Unidentified Introduced Weeds	Inwe
		Seagrass meadow	Seagrass meadow	Zostera sp, "Eelgrass"	Zosp
		Macroalgal	Macroalgal bed	Gracilaria chilensis	Grch
		bed		Ulva sp, "Sea lettuce"	Ulri
		Artificial	Boulder Field man-made		BFmm
		Structure	Rock Wall man-made		RFmm
			Sand Field man-made		SFmm
			Bridge		BRG
			Wharf		WHF
		Mud/sandflat	Firm shell/sand		FSS
			Firm sand		FS
			Soft sand		SS
			Mobile sand		MS
			Firm mud/sand		FMS
			Soft mud/sand		SM
		D 11 C 11	Very soft mud/sand		VSM
		Boulderfield	Boulder field		BF
		Rockfield	Rockfield		RF
		Stonefield	Cobble field		CF
		~	Gravel field		GF
		Shell bank	Shell bank		Shell
		Shellfish field	Cocklebed		Cockle
			Musselreef		Mussel
			Oysterreef		Oyster
		Worm field	Sabellid field		Sabellic
	Subtidal	Water	Water		Water

3.3 Definitions of classification Level III Structural Class

- Forest: Woody vegetation in which the cover of trees and shrubs in the canopy is >80% and in which tree cover exceeds that of shrubs. Trees are woody plants \geq 10 cm dbh. Tree ferns \geq 10cm dbh are treated as trees.
- Treeland: Cover of trees in canopy 20-80%. Trees are woody plants >10cm dbh.
- Scrub: Woody vegetation in which the cover of shrubs and trees in the canopy is > 80% and in which shrub cover exceeds that of trees (c.f. FÓREST). Shrubs are woody plants <10 cm diameter at breast height (dbh). Shrubland: Cover of shrubs in canopy 20-80%. Shrubs are woody plants <10 cm diameter at breast height (dbh).
- Tussockland: Vegetation in which the cover of tussock in the canopy is 20-100% and in which the tussock cover exceeds that of any other growth form or bare ground. Tussock includes all grasses, sedges, rushes, and other herbaceous plants with linear leaves (or linear non-woody stems) that are densely clumped and >100 cm height. Examples of the growth form occur in all species of Cortaderia, Gahnia, and Phormium, and in some species of Chionochloa, Poa, Festuca, Rytidosperma, Cyperus, Carex, Uncinia, Juncus, Astelia, Aciphylla, and Celmisia.
- Grassland: Vegetation in which the cover of grass in the canopy is 20-100%, and in which the grass cover exceeds that of any other growth form or bare ground. Tussock-grasses are excluded from the grass growth-form.
- Sedgeland: Vegetation in which the cover of sedges in the canopy is 20-100% and in which the sedge cover exceeds that of any other growth form or bare ground. "Sedges have edges." Sedges vary from grass by feeling the stem. If the stem is flat or rounded, it's probably a grass or a reed, if the stem is clearly triangular, it's a sedge. Sedges include many species of Carex, Uncinia, and Scirpus. Tussock-sedges and reed-forming sedges (c.f. REEDLAND) are excluded.
- Rushland: Vegetation in which the cover of rushes in the canopy is 20-100% and in which the rush cover exceeds that of any other growth form or bare ground. A tall grasslike, often hollow-stemmed plant, included in the rush growth form are some species of Juncus and all species of, Leptocarpus. Tussock-rushes are excluded.
- Reedland: Vegetation in which the cover of reeds in the canopy is 20-100% and in which the reed cover exceeds that of any other growth form or open water. If the reed is broken the stem is both round and hollow - somewhat like a soda straw. The flowers will each bear six tiny petal-like structures - neither grasses nor sedges will bear flowers, which look like that. Reeds are herbaceous plants growing in standing or slowly-running water that have tall, slender, erect, unbranched leaves or culms that are either hollow or have a very spongy pith. Examples include Typha, Bolboschoenus, Scirpus lacutris, Eleocharis sphacelata, and Baumea articulata.
- Cushionfield: Vegetation in which the cover of cushion plants in the canopy is 20-100% and in which the cushion-plant cover exceeds that of any other growth form or bare ground. Cushion plants include herbaceous, semi-woody and woody plants with short densely packed branches and closely spaced leaves that together form dense hemispherical cushions.
- Herbfield: Vegetation in which the cover of herbs in the canopy is 20-100% and in which the herb cover exceeds that of any other growth form or bare ground. Herbs include all herbaceous and low-growing semi-woody plants that are not separated as ferns, tussocks, grasses, sedges, rushes, reeds, cushion plants, mosses or lichens.
- Lichenfield: Vegetation in which the cover of lichens in the canopy is 20-100% and in which the lichen cover exceeds that of any other growth form or bare ground.
- Seagrass meadows: Seagrasses are the sole marine representatives of the Angiospermae. They all belong to the order Helobiae, in two families: Potamogetonaceae and Hydrocharitaceae. Although they may occasionally be exposed to the air, they are predominantly submerged, and their flowers are usually pollinated underwater. A notable feature of all seagrass plants is the extensive underground root/rhizome system which anchors them to their substrate. Seagrasses are commonly found in shallow coastal marine locations, salt-marshes and estuaries.
- Macroalgal bed: Algae are relatively simple plants that live in freshwater or saltwater environments. In the marine environment, they are often called seaweeds. Although they contain cholorophyll, they differ from many other plants by their lack of vascular tissues (roots, stems, and leaves). Many familiar algae fall into three major divisions: Chlorophyta (green algae), Rhodophyta (red algae), and Phaeophyta (brown algae). Macroalgae are algae observable without using a microscope.
- Firm mud/sand: A mixture of mud and sand, the surface appears brown, and many have a black anaerobic layer below. When walking on the substrate vou'll sink 0-2 cm.
- Soft mud/sand: A mixture of mud and sand, the surface appears brown, and many have a black anaerobic layer below. When walking on the substrate you'll sink 2-5 cm.
- Very soft mud/sand: A mixture of mud and sand, the surface appears brown, and many have a black anaerobic layer below. When walking on the substrate you'll sink greater than 5 cm.
- Mobile sand: The substrate is clearly recognised by the granular beach sand appearance and the often rippled surface layer. Mobile sand is continually being moved by strong tidal or wind-generated currents and often forms bars and beaches. When walking on the substrate you'll sink less than 1 cm.
- Firm sand: Firm sand flats may be mud-like in appearance but are granular when rubbed between the fingers, and solid enough to support an adult's weight without sinking more than 1-2 cm. Firm sand may have a thin layer of silt on the surface making identification from a distance impossible.
- Soft sand: Substrate containing greater than 99% sand. When walking on the substrate you'll sink greater than 2 cm.
- Stone field/Gravel field: Land in which the area of unconsolidated gravel (2-20 mm diameter) and/or bare stones (20-200 mm diam.) exceeds the area covered by any one class of plant growth-form. Stonefields and gravelfields are named based on which form has the greater ground cover. They are named from the leading plant species when plant cover of \geq 1%.
- Cobble field: Land in which the area of unconsolidated cobbles/stones (20-200 mm diam.) exceeds the area covered by any one class of plant growth-form. Cobble fields are named from the leading plant species when plant cover of ≥1%.
- Boulder field: Land in which the area of unconsolidated bare boulders (> 200mm diam.) exceeds the area covered by any one class of plant growth-form. Boulderfields are named from the leading plant species when plant cover is ≥ 1 %.
- Rock/Rock field: Land in which the area of residual bare rock exceeds the area covered by any one class of plant growth-form. Cliff vegetation often includes rocklands. They are named from the leading plant species when plant cover is ≥1%.
- Artificial structures: Introduced natural or man-made materials that modify the environment. Includes rip-rap, rock walls, wharf piles, bridge supports, walkways, boat ramps, sand replenishment, groynes, flood control banks, stopgates.
- Cockle bed: Area that is dominated by primarily dead cockle shells.

Mussel reef: Area that is dominated by one or more mussel species.

Oyster reef: Area that is dominated by one or more oysters species.

Sabellid field: Area that is dominated by raised beds of sabellid polychaete tubes.

4. **RESULTS**

The results of the broad-scale survey of intertidal habitat within Awarua Bay are summarised in Figure 1 and Table 2, with additional detail presented in Tables 3 and 4, and graphically in Figures 2 and 4. Figure 3 provides the legend and species codes for the dominant habitats in Figure 4. In total, 2972 Ha of estuary was mapped (Table 2), including 235 Ha of terrestrial vegetation present around the margins of the estuary. Within the estuary itself, 2131 Ha of intertidal habitat was mapped, along with 606 Ha of subtidal habitat (represented as water). Intertidal habitat consisted of 1334 Ha of unvegetated substrata (63% of the intertidal area) with 797 Ha (37%) of the estuary having vegetation as the dominant cover.

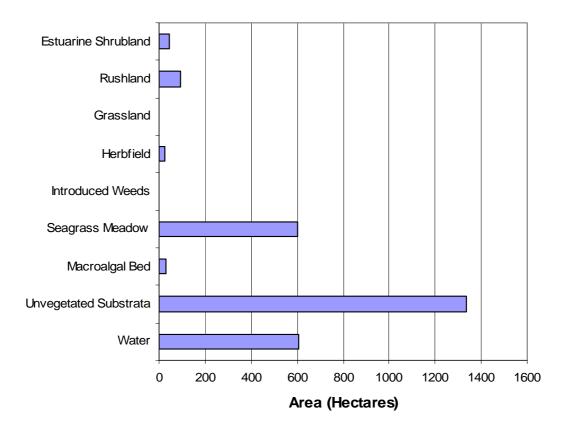


Figure 1 The area of structural class habitats (based on dominant cover) in Awarua Bay.

Table 2 The area (Ha and %) of major habitats within Awarua Bay, April 2004.

OVERALL SUMMARY - Awarua Bay	Area (Ha)	% of Total
Water (subtidal)	605.8	20.4
Unvegetated Substratum	1333.9	44.9
Estuarine Vegetation	797.2	26.8
Terrestrial Vegetation	234.9	7.9
Grand Total	2971.9	

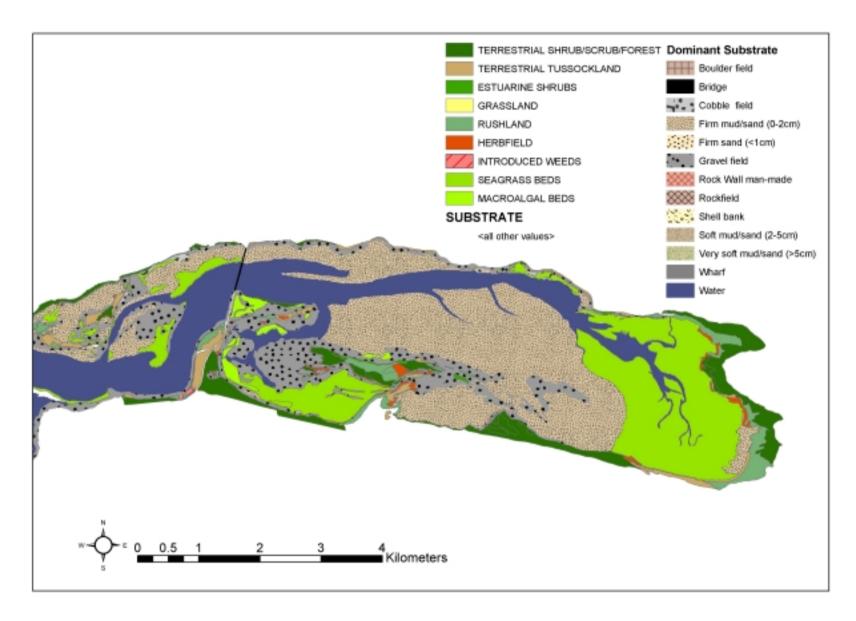
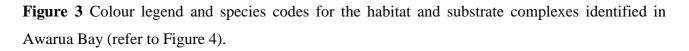



Figure 2 Broad structural habitat of Awarua Bay, April 2004.

							CAWTHB
	gasp_phte_chru_pldi_poci	T	phte_pldi_isno_fear	<u>)</u>	fear_ptes	ale o sta	sare_sera
	lesc		phte_pldi_isno_ptes_fear_lesc_poto_poci_chru		fear_ptes_uleu_phte_lesi	12 5000	sare_sera_isce
4	lesc_chru_pldi_gasp_poci		phte_pldi_fear		fear_uleu_phte_lesi	and a state of the second	sare_sera_isno
	lesc_phte	\sim	phte_pldi_fear_lesi_uleu	2	fear_uleu_phte_ptes	alle, olle, In	sare_sera_saqu
ML	lesc_phte_chru	Y	phte_pldi_lesi_ptes_poci	1	fear_uleu_pldi	al a al c _{an}	sare_sera_saqu_isno
	lesc_pldi_gasp_phte_poto		phte_ptes_chru_fear_poci_lesi_uleu		isno	4 10	sera_isce_saqu_lesi_pldi
	lesc_pldi_phte		phte_ptes_inwe_poci_chru_uleu		isno_amar	R _e Alfe	sera_saqu_sare
	lesc_uleu_phte		phte_uleu	<u>4</u> .	isno_chru_gasp_pldi_poci	ماني ماند	sera_sare
	pira_phte_ptes_lesi_isno_fear	\sim	phte_uleu_fear		isno_chru_phte_pldi		zosp
17-	pira_uleu	5	phte_uleu_fear_pldi_ptes	<u>Me</u>	isno_fear_lesi_sare_sera_pldi		zosp_fms
	pldi_chru_poci_ptes_isno_gasp		phte_uleu_pldi_fear	//	isno_inwe_poci		zosp_fms _grch
	pldi_phte_chru_gasp	.	phte_uleu_pldi_fear_inwe	Sé .	isno_pldi		zosp_grch_fms
14-	pldi_phte_chru_isno		phte_uleu_pldi_ptes_natr	Т., S	isno_pldi_fear_inwe	$\times\!\!\times\!\!\times$	zosp_rf
<u>k</u> e	pldi_phte_ptes_isno		phte_uleu_ptes		isno_pldi_lesi_phte		grch
	poto		росі	<u>87</u>	isno_pldi_phte_amar		grch_gf
ΎΩ	poto_gasp_pldi_poci_phte	1. 1	poci_chru_isno_gf	7	isno_pldi_poci_phte		grch_gf _zosp
	poto_phte_ptes_pldi	eolice. E	poci_diau_sare_sera_saqu		isno_pldi_poci_phte_chru_ptes	Sec. 1	grch_ulri
	ptes	· <i>iii</i> : :	poci_fear_pldi_phte	<u> </u>	isno_poci_chru_phte	24	grch_zosp
//	ptes_inwe_phte_chru_isno_uleu		poci_isno		isno_poci_phte	//	inwe
-	ptes_lesc_phte_uleu		poci_isno_phte		isno_poci_phte_lesi_pldi_sera		inwe_chru_phte_isno
dis.	ptes_phte_fear_inwe_lesc		poci_isno_phte_amar_chru	5	isno_ptes_phte		inwe_isno_poci
	safr_pldi_phte_uleu		poci_isno_pldi	at ai	isno_sera_saqu_sare		inwe_isno_uleu_fear
	uleu	жк. ; -	poci_isno_pldi_fear_saqu_sare_sera		lesi		inwe_poci_isno
iii she	uleu_amar_lesi		poci_isno_pldi_phte	11.	lesi_fear	\frown	inwe_poci_isno_pldi
=:	uleu_fear		poci_isno_pldi_sare_inwe	Sale.	lesi_fear_pldi	\square	bf
<u> </u>	uleu_fear_inwe	16 2	poci_phte_chru		lesi_isno		bf _cf
1	uleu_inwe_chru_isno	1.2	poci_phte_ptes_pldi_isno_chru	= 0.141	lesi_isno_pldi		bf _fms
	uleu_isno	**	poci_pldi_isno_gasp_phte	, T. 67.	lesi_isno_pldi_sera_sare_poci		bf _shel
33062	uleu_lesi_phte		pldi	1. A.	lesi_phte_pldi	, Q .,	cf
	uleu_phte_isno_pldi	<u> </u>	pldi_chru_ptes_phte_isno_poci_fear		lesi_phte_poci_ptes		cf _fms
	chru	~~	pldi_gasp_isno_phte_sare	%	lesi_pldi	(+ -	cf _gf
/ /	chru_inwe_phte_ptes_pldi_isno_poci	$L^{1}(\mathbb{Z})^{2}$	pldi_isno_phte	ч ,	lesi_pldi_fear		fms
	chru_isno_pldi_ptes_fear	10.00	pldi_isno_phte_poci		lesi_pldi_isno		fms _gf
~	chru_lesc_ptes_phte_poci_isno	$4\mu \simeq 1$	pldi_lesi	3	lesi_pldi_lesc	<u> </u>	fms _rf
	chru_phte	—	pldi_phte_amar_isno	1	lesi_pldi_phte	ed.e Sedifici	fms _zosp
	chru_pldi_fear_poci_phte	10 -	pldi_phte_gasp	7	lesi_pldi_phte_fear		fs
i.e.	chru_pldi_phte	i .	pldi_phte_fear	No.	lesi_pldi_poci	$\times\!\!\times\!\!\times$	fs _rf
	chru_pldi_poci_isno_phte_ptes		pldi_phte_uleu	β ^ '	lesi_pldi_poci_phte_diau		gf
1,-	chru_poci_phte_inwe		amar	7	lesi_pldi_sare_sera_saqu		gf _cf
	phte		amar_hesp_core		lesi_poci_phte_sare_sera		gf _fms
SLZ	phte_chru_isno_fear_poci	<u>[</u>]	amar_isno_chru	Sec. 2	lesi_sare_isno		gf _grch
. —	phte_chru_isno_ptes_gasp	la com	amar_isno_inwe_luar_fear	blicaniles .	lesi_sare_sera		gf _sare_sera
<u> </u>	phte_chru_lesc_pldi_isno_poci_ptes	····	amar_isno_poci	م مان آنو	lesi_sera_sare_isce	Q₽)	gf _sera
<u>.</u>	phte_chru_poci_amar_pldi		fear		coco_poci	~~	gf _shel
	phte_chru_ptes_fear_poci_lesi_uleu	line -	fear_amar_isno_luar		saqu	\approx	rf
	phte_core_uleu_pldi_luar	<u>17</u> -	fear_casp_inwe_isno	11.1717	saqu_isce	\times	rf _fms
	phte_fear_pldi_ptes		fear_core_ptes	and and a	saqu_isno	$\times\!\!\times\!\!\times$	RFmm
:: SI4	phte_fear_ptes	\sim	fear_inwe	A	saqu_pldi_fear		shel
$\sim \gamma_{\rm eff}^{\prime}$	phte_isno_pldi_chru_gasp	h da e	fear_isno_phte	100 LUICA 20	saqu_sare		sm
L	phte_lesc_lesi		fear_phte_pldi	int a Marsha	saqu_sera_sare		vsm
	phte_lesc_pldi_fear_natr	<u> </u>	fear_phte_ptes	al.	saqu_sare_sera_isno		BRG
	phte_lesi_pldi_chru		fear_phte_uleu_pldi		sare		WHF
.	phte_pldi_isno	~~	fear_pldi	· · · · · · · · · · · · · · · · · · ·	sare_isno		Water

CAWTHRON

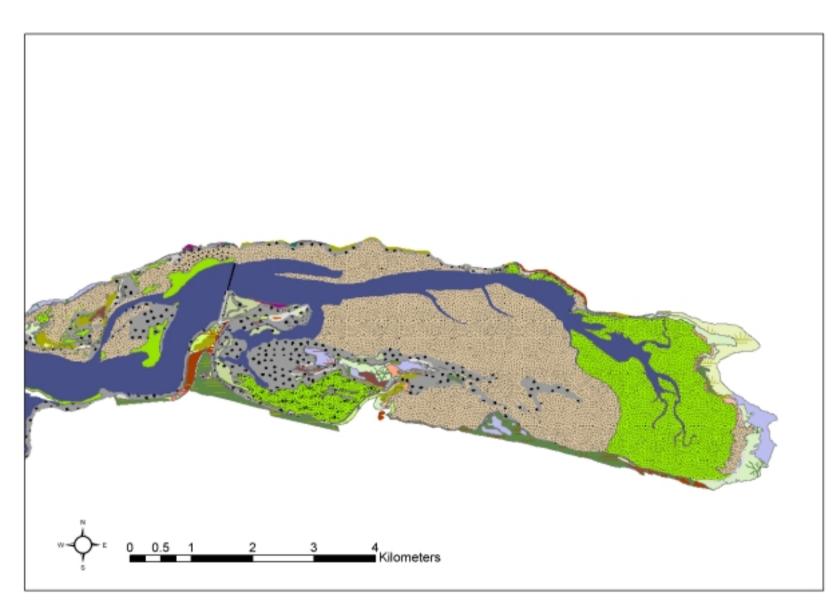


Figure 4 Detail of the dominant habitat cover within the Awarua Bay, April 2004 (legend in Figure 3).

Within the unvegetated area of the estuary, 951 Ha (71%) was classified as firm muddy sand, with 372 Ha (28%) of gravel field (Table 3). The remaining 11 Ha (1%) was largely cobble (9 Ha), with only very small amounts of shell bank and soft mud (<1 Ha each). Other than its large size, the most notable feature of Awarua Bay is the lack of mud. This is likely to reflect the absence of significant rivers or streams entering the Bay and the consequent low terrestrial sediment inputs.

Table 3 Areas of dominant unvegetated substrata, and primary subdominant cover in Awarua Bay,April 2004.

UNVEGETATED SUBSTRATA		Area	% of
Class Dominant substrata	Primary Sub-dominant	(Ha)	Total
Bridge		1.14	0.1
Cobble field		8.59	0.6
Cobble field		7.71	0.6
	Gravel field	0.88	0.1
Gravel field		371.84	27.9
Gravel field		342.42	25.7
	Cobble field	17.72	1.3
	Firm mud/sand (0-2cm)	10.73	0.8
	Gracilaria chilensis (Agar-agar)	0.23	0.0
	Samolus repens (Primrose)	0.21	0.0
	Selliera radicans (Remuremu)	0.55	0.0
Shell bank		0.80	0.1
Firm mud/sand		950.77	71.3
Firm mud/sand (0-2cm)		920.63	69.0
	Gravel field	20.63	1.5
	Zostera sp (Eelgrass)	9.51	0.7
Soft mud/sand		0.81	0.1
Grand Total		1333.9	

Where vegetation was the dominant cover (Table 4), seagrass meadows (*Zostera* – eelgrass) were by far the most dominant, covering 600 Ha (75%). Beds were largest near the head of the Bay and were present mostly in lower intertidal areas. Two rushland species were the next most common dominant habitat, covering 93 Ha, namely *Leptocarpus similis* (Jointed wirerush) (75 Ha) and *Isolepis nodosa* (Knobby clubrush) (19 Ha). Rushland was located predominantly in the upper tidal reaches of the estuary, and *Leptocarpus similis* often included the estuarine shrub *Plagianthus divaricatus* (Saltmarsh ribbonwood) as the primary subdominant species. Ribbonwood itself was the next most common habitat type, with 46 Ha classified as estuarine shrubland. This species is also a significant component of the terrestrial vegetation outside of the estuary margins (Table 5).

Relatively large macroalgal beds (*Gracilaria chilensis*) were also present (31.4 Ha), as were herbfields (23.5 Ha), while Grassland, comprising tall fescue (*Festuca arundinacea*) and marram

grass (*Ammophila arenaria*), was only dominant in very small areas (0.7 Ha). Tussockland was not recorded as a dominant cover in the estuarine areas, although extensive plantings of flax (*Phormium tenax*) and red and silver tussock (*Chionochloa rubra*, *Poa cita*) were present as subdominant cover.

Table 4 Area of dominant estuarine ve	egetation within Awarua	Bay, April 2004.
---------------------------------------	-------------------------	------------------

UARINE VEGETATION ss Dominant species	Primary Sub-dominant	Area (Ha)	% To
arine Shrubland	- Hinary oub dominant	45.55	5
Plagianthus divaricatus (Saltmarsh ribbonwood)		0.17	0
Flagiantinus divancatus (Saitmaisir hibbonwood)	, Chionochloa rubra (Red Tussock)	40.32	5
	Isolepis nodosa (Knobby clubrush)	2.23	0
	Phormium tenax (New Zealand flax)	1.29	0
	Gaultheria sp.(Snowberry)	1.45	0
	Leptocarpus similis (Jointed wirerush)	0.08	0
sland		0.70	0
Ammophila arenaria (Marram grass)	Isolepis nodosa (Knobby clubrush)	0.55	0
Festuca arundinacea (Tall fescue)	Carex spp. (Sedge)	0.16	0
nland		93.47	11
Isolepis nodosa (Knobby clubrush)		0.82	0
	Chionochloa rubra (Red Tussock)	5.03	0
	Poa cita (Silver tussock)	1.67	0
	Selliera radicans (Remuremu)	0.28	0
	Plagianthus divaricatus (Saltmarsh ribbonwood)	8.16	1
	Unidentified introduced weeds	1.34	0
	Pteridium esculentum (Bracken fern)	0.59	0
	Festuca arundinacea (Tall fescue)	0.46	0
	Ammophila arenaria (Marram grass)	0.21	0
Leptocarpus similis (Jointed wirerush)		17.67	2
	Isolepis nodosa (Knobby clubrush)	0.85	0
	Poa cita (Silver tussock)	0.98	0
	Samolus repens (Primrose)	0.70	0
	Phormium tenax (New Zealand flax)	0.18	0
	Plagianthus divaricatus (Saltmarsh ribbonwood)	54.55	6
field		23.45	2
Cotula coronopifolia (Bachelor's button)	Poa cita (Silver tussock)	1.69	0
Samolus repens (Primrose)		0.72	0
	Isolepis nodosa (Knobby clubrush)	0.10	0
	Selliera radicans (Remuremu)	12.56	1
Sarcocornia quinqueflora (Glasswort)		0.03	0
	Isolepis nodosa (Knobby clubrush)	0.41	0
	Samolus repens (Primrose)	1.08	0
	Selliera radicans (Remuremu)	0.22	0
	Isolepis cernua (Slender clubrush)	0.65	0
Selliera radicans (Remuremu)	Samolus repens (Primrose)	5.41	0
	Isolepis cernua (Slender clubrush)	0.01	0
	Sarcocornia quinqueflora (Glasswort)	0.55	0
duced Weeds		2.51	0
Unidentified introduced weeds		0.07	0
	Chionochloa rubra (Red Tussock)	1.82	0
	Isolepis nodosa (Knobby clubrush)	0.26	0
	Poa cita (Silver tussock)	0.36	0
Irass Meadow		600.18	75
Zostera sp (Eelgrass)		49.68	6
	Firm mud/sand (0-2cm)	550.25	69
	Gracilaria chilensis (Agar-agar)	0.24	0
roalgal Bed		31.35	3
Gracilaria chilensis (Agar-agar)		15.28	1
	Gravel field	15.29	1
nd Total	Ulva sp (Sea lettuce)	0.77 797.2	0

In addition to the intertidal mapping, 235 Ha of terrestrial vegetation was mapped to indicate the presence of shrub, scrub and forest cover along the riparian margin of the estuary. However, no consistent boundary has been applied to the mapping of terrestrial areas (*e.g.* catchment boundaries), and mapping has not included other vegetation present such as pasture. Therefore terrestrial estimates shown in Table 5 should not be directly compared to the intertidal mapping results.

TERRI	ESTRIAL VEGETATION		Area	% of
Class	Dominant species	Primary Sub-dominant	(Ha)	Total
	ial Shrub/Scrub/Forest		163.88	69.8
	Gaultheria sp.(Snowberry)	Phormium tenax (New Zealand flax)	2.49	1.1
	Leptospermum scoparium (Manuka)		34.72	14.8
		Chionochloa rubra (Red Tussock)	8.46	3.6
		Phormium tenax (New Zealand flax)	46.98	20.0
		Plagianthus divaricatus (Saltmarsh ribbonwood)	8.88	3.8
		Ulex europaeus (Gorse)	0.50	0.2
	Pinus radiata (Pine tree)	Phormium tenax (New Zealand flax)	0.63	0.3
		Ulex europaeus (Gorse)	0.56	0.2
	Plagianthus divaricatus (Saltmarsh ribbonwood)	Phormium tenax (New Zealand flax)	46.34	19.7
	Podocarpus totara (Totara)		4.83	2.1
		Gaultheria sp.(Snowberry)	1.31	0.6
		Phormium tenax (New Zealand flax)	2.62	1.1
	Pteridium esculentum (Bracken fern)	Leptospermum scoparium (Manuka)	0.59	0.2
		Phormium tenax (New Zealand flax)	0.85	0.4
		Unidentified introduced weeds	0.26	0.1
	Ulex europaeus (Gorse)		3.63	1.5
		Unidentified introduced weeds	0.24	0.1
Tussoc	kland		70.99	30.2
	Chionochloa rubra (Red Tussock)		1.09	0.5
		Isolepis nodosa (Knobby clubrush)	2.18	0.9
		Leptospermum scoparium (Manuka)	4.31	1.8
		Phormium tenax (New Zealand flax)	0.57	0.2
		Plagianthus divaricatus (Saltmarsh ribbonwood)	18.10	7.7
		Poa cita (Silver tussock)	0.48	0.2
		Unidentified introduced weeds	0.49	0.2
	Phormium tenax (New Zealand flax)	Chionochloa rubra (Red Tussock)	7.95	3.4
		Isolepis nodosa (Knobby clubrush)	1.09	0.5
		Leptocarpus similis (Jointed wirerush)	1.12	0.5
		Leptospermum scoparium (Manuka)	1.30	0.6
		Plagianthus divaricatus (Saltmarsh ribbonwood)	17.39	7.4
		Pteridium esculentum (Bracken fern)	1.74	0.7
	Poa cita (Silver tussock)		0.21	0.1
		Chionochloa rubra (Red Tussock)	0.70	0.3
		Disphyma australe (NZ Ice Plant, Horokaka)	2.50	1.1
		Festuca arundinacea (Tall fescue)	4.00	1.7
		Isolepis nodosa (Knobby clubrush)	4.91	2.1
		Phormium tenax (New Zealand flax)	0.32	0.1
		Plagianthus divaricatus (Saltmarsh ribbonwood)	0.55	0.2
Grand	Total		234.9	

12

The terrestrial shrub/scrub/forest was dominated by manuka *Leptospermum scoparium* (99.5 Ha, 60.7%) and saltmarsh ribbonwood *Plagianthus divaricatus* (46.3 Ha, 28.3%). Tussockland was relatively evenly divided between New Zealand flax *Phormium tenax* (30.6 Ha, 43%) and red tussock *Chionochloa rubra* (27.2 Ha, 38.3%) with the remaining cover of silver tussock *Poa cita*. Saltmarsh ribbonwood was the primary subdominant species for 36.0 Ha (50.8%) of the tussockland.

Full details on the vegetation and substrates present, from which the broad scale figures and tables are derived, are included on the accompanying CD-ROM, "*Broad Scale Intertidal Habitat Mapping: Awarua Bay*".

5. OVERVIEW

Other than its large size, the most notable feature of Awarua Bay is the lack of mud. This is likely to reflect the absence of a river entering the Bay, and the consequent low level of sediment inputs. The broad scale habitat characterisation of Awarua Bay identified the following features:

- > A large firm sand and gravel estuary with very little mud
- An extensive area of seagrass meadow (*Zostera* eelgrass) in the head of the Bay
- An area in the northeast where there is a relatively undisturbed transition from estuary vegetation to terrestrial vegetation
- > Good examples of herbfield vegetation around a centrally located gravel peninsula
- The relatively large fetch along the open reaches of the Bay are likely generate waves that may limit the growth of some plants, or cause regular disturbance.

6. COMBINED SUMMARY OF BLUFF HARBOUR AND AWARUA BAY

Bluff Harbour and Awarua Bay are two parts of a single harbour system. They have been separated for the purposes of reporting primarily to make data presentation more manageable. However, the two parts of the harbour also have physical differences which may require different management approaches. Broad scale habitat mapping of Bluff Harbour was undertaken at the same time as Awarua Bay (April 2004) and the results are presented in Robertson *et al* (2004b).

Table 6 summarises the combined results for Bluff Harbour and Awarua Bay, and shows the major differences between the two areas.

Table 6 Summary of combined results for Bluff Harbour and Awarua Bay, April 2004.

OVERALL	Bluff Harbour			Awarua Bay			Bluff/Awarua Combined	
SUMMARY	Area		% of combined	Area		% of combined	Area	l
	Ha	%	Bluff/Awarua	На	%	Bluff/Awarua	Ha	%
Water (subtidal)	1656.1	52.9	27.1	605.8	20.4	9.9	2261.9	37.1
Unvegetated Substratum	1194.8	38.2	19.6	1333.9	44.9	21.9	2528.7	41.4
Estuarine Vegetation	237.6	7.6	3.9	797.2	26.8	13.1	1034.8	17.0
Terrestrial Vegetation	41.8	1.3	0.7	234.9	7.9	3.8	276.7	4.5
Grand Total	3130.2	100	51.3	2971.9	100	48.7	6102.1	100

Overall, about 37% of the combined system is subtidal, 41% unvegetated, 17% estuarine vegetation, and 5% terrestrial vegetation. When compared directly to Bluff Harbour, Awarua Bay has approximately three times more estuarine vegetation, a similar amount of unvegetated substratum, and about three times less subtidal habitat. Although the areas of terrestrial vegetation do not provide an accurate indication of cover, Awarua Bay also has much more terrestrial vegetation around the margins than Bluff Harbour.

7. ACKNOWLEDGEMENTS

Thanks to Les McGraw (Environment Southland) for producing and rectifying the aerial photographs, and Michelle White (Environment Southland) for her help with the ground-truthing of the habitat features. Ben Robertson (Cawthron) digitised many of the shape files, and Paul Barter (Cawthron) provided invaluable assistance with the GIS components of the work.

8. **REFERENCES**

- Atkinson, I.A.E. 1985. Derivation of vegetation mapping units for an ecological survey of Tongariro National Park North Island, New Zealand. New Zealand Journal of Botany 23: 361-378
- Ministry for the Environment. 2001. Environmental performance indicators: Confirmed indicators for the marine environment. ME No. 398, Ministry for the Environment, Wellington. 65p.
- Robertson, B.M.; Gillespie, P.A.; Asher, R.A.; Frisk, S.; Keeley, N.B.; Hopkins, G.A.; Thompson, S.J.; Tuckey, B.J. 2002. *Estuarine Environmental Assessment and Monitoring: A National Protocol.* Part A. Development, Part B. Appendices, and Part C. Application. Prepared for supporting Councils and the Ministry for the Environment, Sustainable Management Fund Contract No. 5096. Part A. 93p. Part B. 159p. Part C. 40p plus field sheets.
- Robertson, B.M.; Stevens, L.M.; Thompson, S.J.; Robertson, B. 2004a. Broad Scale Intertidal Habitat Mapping of Waikawa Estuary. *Cawthron Report No. 939.* Prepared for Environment Southland. 13p.
- Robertson, B.M.; Stevens, L.M.; Thompson, S.J.; Robertson, B. 2004b. Broad Scale Intertidal Habitat Mapping of Bluff Harbour. *Cawthron Report No. 940.* Prepared for Environment Southland. 14p.
- Stevens, L. and Clarke, M. 2004. Broad Scale Mapping of Subtidal Habitat and Ecology of Bluff Harbour, 2004. Prepared for Environment Southland. *Cawthron Report No. 916*. Prepared for Environment Southland. 38p.