# Waimea Plains Piezometric Survey 

Brydon Hughes

March 2003

Te Taiao Tonga

## Environment Southland is the brand name of Southland Regional Council

### 1.0 Introduction

Over the past two years significant development of groundwater resources has occurred in northern Southland primarily due to the demand for pastoral irrigation. This increase in demand for groundwater abstraction highlighted the lack of information available for Environment Southland to effectively manage the resource.

Prior to 2002 limited information was held by Environment Southland to determine groundwater usage and piezometric levels across the Waimea Plain. The total number of bores recorded on the Environment Southland WELLS database at the end of 2001 was approximately 110. These records were mainly derived from drillers logs or the 1997/98 groundwater snapshot survey (Hamill, 1998).

This report documents the methodology and results of piezometric surveys undertaken in the Wiamea Plains area during 2002. The aim of these investigations was to provide more complete information on bore locations, groundwater usage and piezometric levels in the northern Southland area that could be utilised for groundwater resource management. This work is a component of the wider groundwater monitoring and investigation programs established by Environment Southland in early 2000.

The piezometric survey was undertaken in two parts. During February 2002 approximately 140 sites were surveyed in the area extending from Balfour to Mossburn. During November 2002 coverage of the survey was extended to include a further 160 sites in the Balfour/Riversdale/Wendonside area. At the completion of the November 2002 the number of bores, wells and springs recorded on the Waimea Plains had increased to approximately 460.

Results of the two surveys are combined to produce a single piezometric contour map of the Waimea Plains for this report. The seasonal water table variation of between 1-3 metres across the study area between the two surveys was considered unlikely to have a significant effect on piezometric contours when viewed at a regional scale.

## Initial Site Identification

Similar methods were employed for both the February and November 2002 peizometric surveys. The initial phase of the survey involved site visits to all properties within the respective field areas. Wherever possible landowners were contacted regarding the location of bores, wells and springs on their property. Relevant details were recorded and permission sought to revisit the site to survey the wellhead elevation and groundwater level during the main survey.

In practice between 30-40 percent of landowners were unable to be contacted during initial site visits. Where contact was unable to be established, properties were only revisited if no suitable alternative sites existed in the surrounding area.

During site visits, details of bores, wells, springs and waterholes were recorded using a standard field sheet. The spatial location of relevant features was fixed using a handheld GPS unit. Information recorded included:
$>$ Owners name
$>$ Contact address
$>$ Phone Number
$>$ Description of feature (bore/well/spring/waterhole)
> Grid Reference (GPS)
> Description of bore location
$>$ Depth
$>$ Diameter
$>$ Use
$>$ Casing material
$>$ Location Diagram
$>$ Photo of wellhead
Details of bore locations were entered into the Environment Southland WELLS database and well numbers assigned to each feature. Field sheets were indexed with other hardcopy bore records.

### 2.0 Piezometric Survey

Differential GPS survey equipment was used to provide accurate wellhead elevations to enable relative groundwater levels to be determined. The February 2002 survey was undertaken using a RTK Trimble 4000 base and rover unit obtained from Geohire, New Plymouth. The November 2002 survey was undertaken using a Leica SR510 base and receiver unit on hire from TrueSouth Survey Services, Invercargill.

Both RTK GPS systems recorded survey information electronically, allowing direct downloading of field survey information onto Environment Southland ARCVIEW software.

## Survey Methodology

Prior to commencement of field surveys relevant benchmarks were identified across the field area. Fortunately benchmark coverage was good along SH94 and SH6 which enabled relatively easy coverage of a majority of the survey areas. Benchmark locations and orthometric heights were identified from the Land Information New Zealand (LINZ) website (http://gdb.linz.govt.nz/cgi-bin/gdb.cgi).

Wherever possible the survey base station was set up on a known benchmark using data derived from the LINZ website. Once the base station was established the level accuracy was cross-checked by taking spot measurements on a least two nearby benchmarks. In general, the levels obtained during cross checking were within $+/-0.1$ metres of the listed orthometric heights.

In practice, the distance over which an adequate radio link could be established between base station and rover unit to provide an accurate fix on spot height elevation varied between $4-12 \mathrm{~km}$ depending on atmospheric conditions. One of the major factors limiting the operational range of the rover unit was the presence of trees or shelterbelts on the line of sight.

In areas where no reliable survey benchmarks were available, temporary benchmarks were established to allow extension of the survey coverage. The procedure for the establishment of a temporary benchmark involved installation of a metal peg at an appropriate location. The elevation of the temporary mark was then accurately surveyed from a known benchmark. The base station was then transferred to the temporary benchmark and the elevation of the original benchmark recorded to cross check the accuracy of the new benchmark elevation before further surveying was undertaken.

## Field Measurements

Each of the piezometric surveys was undertaken over the space of a week to ensure groundwater levels were comparable. At each site a wellhead reference elevation and groundwater level were measured. Not all bores recorded during initial site visits were surveyed due to time constraints on hire equipment. Sites that were located remote from survey coverage and would have required the establishment of additional temporary benchmarks stations were not surveyed. In addition, some sites that were in close proximity were not surveyed to expedite survey coverage.

The wellhead elevation of sites that were pumping at the time of the second site visit were recorded. A representative reduced groundwater level was then calculated for these sites based on the groundwater level measured during the initial site visit with allowance made for seasonal variation over the intervening period.

Wherever possible the elevation for each bore or well was measured directly from the water level reference point (eg. top of the casing). However, in situations where direct measurement of the reference point was not possible, ground surface elevation was recorded and a correction for reference point elevation noted.

### 3.0 Results

Appendix 1 contains a listing of corrected survey results. This data includes all sites measured including surveyed locations, wellhead and spot height elevations along with measured groundwater depths and reduced groundwater levels.

Measured depths to groundwater ranged from 0 to 23.9 metres below ground. In the February 2002 survey, groundwater levels in excess of 10 metres below ground surface were only recorded along the footslopes of the North Range. Elsewhere across the five Rivers, Castlerock, Oreti and Waimea Plains groundwater zones levels were less than 5 metres below the land surface.

In the November 2002 survey a number of bores on the Wendonside Terrace and along the southeast extension of the Longridge showed groundwater levels greater than 10 metres below the ground surface. Again, groundwater levels across the flat-lying Riversdale, Waipounamu and Knapdale groundwater zones were less than 5 metres below the ground surface.

Data from the two individual surveys was stored on separate files but also combined for the purpose of producing a regional piezometric contour map. The observed seasonal
groundwater level fluctuation of between 1-3 metres between the two surveys was assumed to have a limited effect on overall piezometric patterns at a regional scale.

Initial contour maps of reduced water table elevation were produced from the raw data using ARCVIEW Spatial Analyst. The resulting contours were used as a basis for production of the final contour maps. Where limited groundwater level data were available the estimated piezometric contours were matched with the measured depths to groundwater and topographic contours.

Figure 1 shows the interpreted piezometric contours for the Waimea Plain. The contours show a relatively complex regional groundwater flow pattern resulting from the interaction of topographic and geological features in the area as well as the hydraulic characteristics of the alluvial gravel aquifers.

Based on the interpreted piezometric contours, representative hydraulic gradients for the 10 groundwater zones covered by the survey are listed in Table 1

| Groundwater <br> zone | Piezomentric <br> gradient | Flow <br> direction | Controls on groundwater flow |
| :--- | :---: | :---: | :--- |
| Castlerock | 0.0065 | E/SE | Drainage from North Range <br> Discharge to Murray Creek |
| Oreti | 0.00625 | E/SE | Relative Oreti River stage |
| Five Rivers | 0.0065 | E/SE to <br> N/S | Drainage toward Irthing/Cromel/Acton <br> Overall drainage toward Irthing confluence |
| Waimea Plains | 0.0031 | SE | Drainage divide between Oreti and Waimea Stream <br> catchments at Lintley <br> Longridge tertiary outcrops |
| Longridge | - | NE | Drainage toward Riversdale Aquifer |
| Riversdale | 0.0028 | SE | Drainage toward Mataura |
| Waiponamu | 0.003 | SE | Drainage toward Mataura/Waikaia confluence |
| Wendonside | 0.0074 | SE |  |
| Cattle Flat | 0.007 | S/SW | Drainage parallel to Mataura River |
| Knapdale | - | S/SE | Drainage toward Mataura River |

The main features of groundwater flow apparent from the interpreted piezometric contours include:
> Groundwater flow generally follows the topographic gradient
> A hydraulic divide separating the Oreti River and Waimea Stream catchments was observed in the Lintley area. This indicates there is no flow loss from the Oreti catchment further down the Waimea Plain. This observation is consistent with the results of concurrent gaugings undertaken on the Oreti River.
> A drainage divide occurs between the Waimea Plains and Riversdale groundwater zones due to the presence of uplifted Tertiary sediments which occur along the trend of Longridge and diagonally cross the Waimea Plains. The limestone outcrops at Kingston Crossing form part of this geological structure.
> The remnant Quaternary gravel deposits of the Longridge groundwater zone drain toward the Riversdale aquifer and effectively increase the recharge area for this aquifer system.
$>$ Goundwater flow on the lower floodplain terraces of the Riversdale and Waiponamu groundwater zones generally follows the Mataura River. This indicates the potential for groundwater/surface water interaction in these aquifer systems in response to relative river and groundwater stage heights.
> Groundwater recharge to the Wendonside groundwater zone may occur from the Mataura River over the reach upstream of the Ardlussa Bridge.

Piezometric Contours - Waimea Plains


Figure 1: Piezometric Contours for the Waimea Plains (mamsl)

## Appendix 1: Survey Results

Piezometric Survey Waimea Plains 11-15 February 2002

| Site | Corrected WL | Elevation | Water table elevation | Easting | Northing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E43/0006 | 2.80 | 269.42 | 266.62 | 5501367 | 2151453 |
| E43/0013 | 1.76 | 258.28 | 256.52 | 5501056 | 2153910 |
| E43/0015 | 1.05 | 255.95 | 254.90 | 5500694 | 2153655 |
| E43/0016 | 2.44 | 255.88 | 253.44 | 5500337 | 2154452 |
| E43/0017 | 0.00 | 266.73 | 266.73 | 5500642 | 2150423 |
| E44/0006 | 3.32 | 293.50 | 290.18 | 5494318 | 2138764 |
| E44/0007 | 4.32 | 173.12 | 168.80 | 5480916 | 2154760 |
| E44/0008 | 4.04 | 164.65 | 160.61 | 5474532 | 2169633 |
| E44/0009 | 5.44 | 165.59 | 160.15 | 5475305 | 2166884 |
| E44/0010 | 3.13 | 157.02 | 153.89 | 5476456 | 2162524 |
| E44/0011 | 3.80 | 214.45 | 210.65 | 5489384 | 2151302 |
| E44/0012 | 4.75 | 209.24 | 204.49 | 5489207 | 2152029 |
| E44/0013 | 2.14 | 222.50 | 220.36 | 5494019 | 2151191 |
| E44/0014 | 2.34 | 257.01 | 254.67 | 5496507 | 2144970 |
| E44/0015 | 2.22 | 257.65 | 255.43 | 5499053 | 2149355 |
| E44/0016 | 3.96 | 283.63 | 279.67 | 5492900 | 2140559 |
| E44/0035 | 2.38 | 179.00 | 176.62 | 5479529 | 2161189 |
| E44/0036 | 5.15 | 157.13 | 151.98 | 5472955 | 2164446 |
| E44/0070 | 3.05 | 188.56 | 185.51 | 5480197 | 2157071 |
| E44/0076 | 3.89 | 170.56 | 166.67 | 5472403 | 2160959 |
| E44/0083 | 4.15 | 250.60 | 246.45 | 5496221 | 2146463 |
| E44/0084 | 4.77 | 252.71 | 247.94 | 5495111 | 2146005 |
| E44/0085 | 3.04 | 227.58 | 224.54 | 5494441 | 2150342 |
| E44/0086 | 2.05 | 236.75 | 234.70 | 5495561 | 2148784 |
| E44/0087 | 1.62 | 212.65 | 211.03 | 5492517 | 2152821 |
| E44/0088 | 1.55 | 223.73 | 222.18 | 5493121 | 2150740 |
| E44/0089 | 0.00 | 233.48 | 233.48 | 5496147 | 2148956 |
| E44/0090 | 3.80 | 234.46 | 230.66 | 5497632 | 2153590 |
| E44/0091 | 3.34 | 275.76 | 272.42 | 5497968 | 2155403 |
| E44/0092 | 2.61 | 237.14 | 234.53 | 5495418 | 2154041 |
| E44/0093 | 2.45 | 248.01 | 245.56 | 5495423 | 2154436 |
| E44/0096 | 0.57 | 256.42 | 255.85 | 5498081 | 2145161 |
| E44/0097 | 3.09 | 255.78 | 252.69 | 5497583 | 2145245 |
| E44/0098 | 2.43 | 248.37 | 245.94 | 5497344 | 2146603 |
| E44/0099 | 1.27 | 243.63 | 242.36 | 5497458 | 2147327 |
| E44/0100 | 1.32 | 257.58 | 256.26 | 5498911 | 2144984 |
| E44/0101 | 2.28 | 254.99 | 252.71 | 5498754 | 2148615 |
| E44/0103 | 1.57 | 257.84 | 256.27 | 5499467 | 2150541 |
| E44/0105 | 2.17 | 256.86 | 254.69 | 5499985 | 2151323 |
| E44/0106 | 1.78 | 248.04 | 246.26 | 5499096 | 2152103 |
| E44/0107 | 4.09 | 235.59 | 231.50 | 5497322 | 2152723 |
| E44/0108 | 2.15 | 228.78 | 226.63 | 5496386 | 2152655 |
| E44/0111 | 0.67 | 285.28 | 284.61 | 5496080 | 2140648 |
| E44/0112 | 1.63 | 275.07 | 273.44 | 5497159 | 2141694 |
| E44/0114 | 2.25 | 270.10 | 267.85 | 5497196 | 2142818 |


| E44/0115a | 0.00 | 270.57 | 270.57 | 5497653 | 2143082 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E44/0115 | 3.72 | 262.32 | 258.60 | 5496751 | 2144155 |
| E44/0117 | 16.91 | 279.97 | 263.06 | 5490465 | 2139649 |
| E44/0118 | 1.06 | 281.49 | 280.43 | 5493366 | 2140476 |
| E44/0121 | 2.28 | 261.49 | 259.21 | 5492996 | 2144039 |
| E44/0122 | 2.80 | 259.05 | 256.25 | 5491657 | 2144775 |
| E44/0123 | 3.26 | 252.94 | 249.68 | 5491774 | 2145286 |
| E44/0125 | 2.53 | 244.48 | 241.95 | 5490799 | 2146743 |
| E44/0126 | 11.16 | 195.19 | 184.03 | 5484904 | 2152813 |
| E44/0127 | 1.31 | 203.00 | 201.69 | 5488258 | 2152458 |
| E44/0129 | 0.00 | 179.97 | 179.97 | 5483682 | 2152960 |
| E44/0131 | 2.06 | 200.71 | 198.65 | 5488732 | 2153295 |
| E44/0134 | 0.74 | 224.23 | 223.49 | 5485676 | 2149252 |
| E44/0136 | 2.63 | 242.71 | 240.08 | 5490189 | 2147067 |
| E44/0137 | 5.93 | 248.77 | 242.84 | 5489014 | 2147128 |
| E44/0138 | 2.54 | 210.48 | 207.94 | 5487779 | 2151060 |
| E44/0139 | 15.95 | 213.06 | 197.11 | 5486908 | 2150546 |
| E44/0140 | 0.80 | 173.78 | 172.98 | 5481622 | 2156820 |
| E44/0141 | 8.72 | 184.74 | 176.02 | 5484694 | 2157185 |
| E44/0142 | 1.75 | 187.76 | 186.01 | 5485876 | 2155429 |
| E44/0143 | 1.50 | 191.94 | 190.44 | 5487230 | 2154915 |
| E44/0145 | 10.74 | 186.88 | 176.14 | 5483762 | 2157746 |
| E44/0146 | 2.64 | 171.90 | 169.26 | 5480210 | 2154543 |
| E44/0147 | 3.36 | 191.02 | 187.66 | 5478329 | 2157643 |
| E44/0148 | 2.88 | 181.70 | 178.82 | 5477408 | 2158599 |
| E44/0149 | 1.96 | 175.60 | 173.64 | 5475867 | 2159753 |
| E44/0150 | 1.91 | 175.69 | 173.78 | 5475928 | 2159812 |
| E44/0151 | 0.00 | 173.53 | 173.53 | 5475866 | 2159823 |
| E44/0152 | 3.73 | 177.18 | 173.45 | 5476539 | 2160407 |
| E44/0153 | 2.36 | 183.26 | 180.90 | 5479398 | 2159157 |
| E44/0154 | 2.07 | 176.96 | 174.89 | 5477844 | 2160294 |
| E44/0155 | 1.81 | 178.03 | 176.22 | 5478312 | 2160079 |
| E44/0156 | 0.00 | 180.62 | 180.62 | 5481846 | 2158188 |
| E44/0157 | 5.50 | 175.84 | 170.34 | 5481293 | 2155824 |
| E44/0159 | 2.02 | 183.82 | 181.80 | 5479869 | 2160185 |
| E44/0160 | 2.19 | 182.94 | 180.75 | 5478903 | 2159788 |
| E44/0161 | 1.74 | 188.94 | 187.20 | 5480267 | 2160041 |
| E44/0162 | 0.00 | 190.77 | 190.77 | 5478304 | 2164359 |
| E44/0163 | 5.32 | 177.73 | 172.41 | 5475474 | 2161176 |
| E44/0167 | 5.98 | 157.40 | 151.42 | 5471423 | 2166594 |
| E44/0200 | 4.20 | 181.95 | 177.75 | 5483643 | 2155907 |
| E44/0203 | 2.50 | 289.35 | 286.85 | 5494488 | 2139691 |
| E45/0094 | 5.10 | 149.38 | 144.28 | 5467849 | 2169058 |
| E45/0121 | 7.84 | 152.94 | 145.10 | 5468924 | 2168782 |
| E45/0122 | 0.87 | 163.97 | 163.10 | 5467722 | 2165687 |
| F44/0006 | 6.07 | 170.18 | 164.11 | 5474741 | 2171360 |
| F44/0020 | 3.88 | 141.74 | 137.86 | 5474769 | 2176486 |
| F44/0052 | 7.10 | 167.74 | 160.64 | 5470753 | 2170882 |
| F44/0054 | 3.12 | 150.84 | 147.72 | 5476879 | 2173147 |
| F44/0055 | 2.74 | 151.63 | 148.89 | 5477283 | 2173210 |
| F44/0056 | 7.00 | 139.37 | 132.37 | 5473982 | 2177448 |
| F44/0057 | 4.50 | 136.79 | 132.29 | 5472396 | 2176374 |


| F44/0058 | 4.74 | 138.90 | $\mathbf{1 3 4 . 1 6}$ | 5472946 | 2176550 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| F44/0059 | 2.31 | 134.07 | $\mathbf{1 3 1 . 7 6}$ | 5472425 | 2177765 |
| F44/0060 | 5.07 | 165.65 | $\mathbf{1 6 0 . 5 8}$ | 5474445 | 2172955 |
| F45/0268 | 6.08 | 146.75 | $\mathbf{1 4 0 . 6 7}$ | 5467935 | 2171495 |

## Bench Marks

| A1QR |  | 239.46 |  | 5477773 | 2166014 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADR8 |  | 238.65 |  | 5495422 | 2154147 |
| ADR9 |  | 241.51 |  | 5495835 | 2154318 |
| ADRA |  | 259.54 |  | 5497121 | 2154902 |
| ADX4 |  | 243.25 |  | 5490260 | 2154142 |
| ADX7 |  | 181.09 |  | 5483600 | 2155953 |
| ADXF |  | 225.74 |  | 5489987 | 2149366 |
| ADXH |  | 241.56 |  | 5490796 | 2147527 |
| ADXU |  | 175.72 |  | 5481477 | 2155323 |
| ADXV |  | 178.91 |  | 5482598 | 2155801 |
| ADXY |  | 164.85 |  | 5475949 | 2168949 |
| ADY0 |  | 136.10 |  | 5476448 | 2167602 |
| ADYV |  | 140.83 |  | 5472304 | 2177372 |
| ADYW |  | 165.98 |  | 5472525 | 2176125 |
| ADYX |  | 162.52 |  | 5472940 | 2174830 |
| B3PW |  |  |  |  |  |
| ST PATRICKS TRIG |  |  |  |  |  |

Spot Heights

| BALFOUR1 |  | 156.89 |  | 5475070 | 2164052 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CROMEL |  | 244.38 |  | 5497882 | 2147137 |
| 1002 |  | 226.17 |  | 5489987 | 2149366 |
| FIVERIV SPIT |  | 252.06 |  | 5496916 | 2145440 |
| FIVRIV 1 |  | 263.79 |  | 5499986 | 2154788 |
| FIVRIV 2 |  | 269.86 |  | 5499890 | 2155078 |
| FIVRIV 3 |  | 253.49 |  | 5500208 | 2154098 |
| FIVRIV 4 |  | 259.14 |  | 5500767 | 2153015 |
| FIVRIV 5 |  | 265.07 |  | 5501389 | 2152977 |
| FIVRIV 6 |  | 253.77 |  | 5501146 | 2151958 |
| FIVRIV 7 |  | 224.76 |  | 5499726 | 2151730 |
| IRTHING |  | 170.42 |  | 5493225 | 2153692 |
| IRTHING 2 |  | 169.19 |  | 5495771 | 2153256 |
| JVILLE1 |  | 257.85 |  | 5480246 | 2157343 |
| JVILLE2 |  | 290.07 |  | 5479980 | 2159869 |
| JVILLE3 |  | 278.55 |  | 5499467 | 2150541 |
| OPP 1354 |  |  |  |  |  |
| ORETI BRIDGE |  |  |  |  |  |
| OSWALD STREAM |  |  |  |  |  |

Piezometric Survey Waimea Plains 11-15 November 2002

| Site | Corrected WL | Elevation | Water table elevation | Easting | Northing |  |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
| E44/0174 | 4.44 | 171.322 | $\mathbf{1 6 6 . 8 8}$ | 2169503 | 5483930 |  |
| E44/0197 | 1.9 | 175.548 | $\mathbf{1 7 3 . 6 5}$ | 2169114 | 5484487 |  |
| E44/0206 | 1.55 | 175.133 | $\mathbf{1 7 3 . 5 8}$ | 2169762 | 5478955 |  |
| E44/0207 | 5.55 | 170.644 | $\mathbf{1 6 5 . 0 9}$ | 2169672 | 5476308 |  |


| E44/0208 | 4.59 | 168.079 | 163.49 | 2169711 | 5475759 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F44/0008 | 2.37 | 140.573 | 138.20 | 2181885 | 5481729 |  |
| F44/0011 | 2.77 | 139.962 | 137.19 | 2181900 | 5481235 |  |
| F44/0012 | 16.64 | 188.355 | 171.72 | 2171768 | 5482954 |  |
| F44/0013 | 2.45 | 182.518 | 180.07 | 2183449 | 5490641 |  |
| F44/0014 | 1.53 | 132.4186 | 130.89 | 2177743 | 5470850 |  |
| F44/0015 | 2.31 | 130.6786 | 128.37 | 2180438 | 5472426 |  |
| F44/0018 | 2.55 | 188.679 | 186.13 | 2178523 | 5485871 |  |
| F44/0024 | 1.67 | 125.0436 | 123.37 | 2182163 | 5471467 |  |
| F44/0026 | 1.67 | 130.7266 | 129.06 | 2180185 | 5472575 |  |
| F44/0027 | 3.67 | 152.666 | 149.00 | 2175266 | 5480297 |  |
| F44/0029 | 4.39 | 162.133 | 157.74 | 2174747 | 5470103 |  |
| F44/0030 | 3.22 | 147.437 | 144.22 | 2176770 | 5478617 |  |
| F44/0037 | 1.67 | 146.695 | 145.03 | 2182991 | 5484736 |  |
| F44/0040 | 1.98 | 147.241 | 145.26 | 2176886 | 5479828 |  |
| F44/0048 | 2.27 | 119.766 | 117.50 | 2184055 | 5470137 |  |
| F44/0055 | 2.23 | 151.772 | 149.54 | 2173205 | 5477288 |  |
| F44/0059 | 1.67 | 134.2386 | 132.57 | 2177761 | 5472427 |  |
| F44/0061 | 8.84 | 211.716 | 202.88 | 2174996 | 5486895 | poor acc |
| F44/0067 | 1.03 | 163.522 | 162.49 | 2173369 | 5471717 |  |
| F44/0069 | 22.72 | 183.232 | 160.51 | 2178434 | 5483079 |  |
| F44/0072 | 4.68 | 157.372 | 152.69 | 2184460 | 5487345 |  |
| F44/0074 | 5 | 159.043 | 154.04 | 2173375 | 5480672 |  |
| F44/0080 | 2 | 122.19 | 120.19 | 2182902 | 5470444 |  |
| F44/0081 | 2.2 | 121.962 | 119.76 | 2182902 | 5470450 |  |
| F44/0082 | 1.99 | 125.1846 | 123.19 | 2182134 | 5471324 |  |
| F44/0084 | 0.54 | 160.322 | 159.78 | 2174070 | 5470821 |  |
| F44/0085 | 3.87 | 131.983 | 128.11 | 2183304 | 5477309 |  |
| F44/0086 | 1.74 | 135.91 | 134.17 | 2183340 | 5479630 |  |
| F44/0087 | 2.99 | 132.593 | 129.60 | 2183651 | 5477421 |  |
| F44/0088 | 2.54 | 131.966 | 129.43 | 2183445 | 5477800 |  |
| F44/0090 | 1.6 | 126.14 | 124.54 | 2184165 | 5474879 |  |
| F44/0091 | 18.83 | 179.827 | 161.00 | 2171011 | 5471611 |  |
| F44/0092 | 2.69 | 142.262 | 139.57 | 2183312 | 5482184 |  |
| F44/0094 | 2.79 | 130.287 | 127.50 | 2183747 | 5476155 |  |
| F44/0095 | $>3.54$ | 131.796 |  | 2183463 | 5476761 |  |
| F44/0097 | 2.03 | 123.4326 | 121.40 | 2182971 | 5471456 |  |
| F44/0099 | 2.47 | 165.16 | 162.69 | 2170042 | 5482080 |  |
| F44/0103 | 2.56 | 136.2916 | 133.73 | 2176444 | 5471409 |  |
| F44/0104 | 1.42 | 127.6586 | 126.24 | 2180689 | 5471331 |  |
| F44/0105 | 1.99 | 130.155 | 128.17 | 2177775 | 5470140 |  |
| F44/0106 | 2.03 | 172.737 | 170.71 | 2170772 | 5485454 |  |
| F44/0107 | 5.46 | 131.296 | 125.84 | 2182602 | 5475148 |  |
| F44/0108 | 3.27 | 129.766 | 126.50 | 2182232 | 5474420 |  |
| F44/0109 | 3.08 | 129.316 | 126.24 | 2182349 | 5473984 |  |
| F44/0110 | 1.88 | 130.753 | 128.87 | 2182046 | 5475694 |  |
| F44/0112 | 1.51 | 132.181 | 130.67 | 2180784 | 5474581 |  |


| F44/0113 | 2.8 | 133.4026 | 130.60 | 2179223 | 5472618 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F44/0114 | 2.49 | 129.6376 | 127.15 | 2180144 | 5472409 |  |
| F44/0115 | 5.7 | 167.107 | 161.41 | 2172413 | 5470376 |  |
| F44/0116 | 2.09 | 161.191 | 159.10 | 2174637 | 5470103 |  |
| F44/0118 | 0 | 164.018 | 164.02 | 2171628 | 5472857 |  |
| F44/0122 | 2.42 | 167.134 | 164.71 | 2170043 | 5482959 |  |
| F44/0123 | 3.5 | 166.225 | 162.73 | 2170183 | 5482114 |  |
| F44/0125 | 3.57 | 151.308 | 147.74 | 2175507 | 5479858 |  |
| F44/0127 | 2 | 144.099 | 142.10 | 2177457 | 5477440 |  |
| F44/0128 | 2.5 | 147.246 | 144.75 | 2176427 | 5478878 |  |
| F44/0130 | 0.57 | 138.939 | 138.37 | 2178648 | 5476414 |  |
| F44/0131 | 0.54 | 138.161 | 137.62 | 2179054 | 5476576 |  |
| F44/0132 | 4.85 | 157.046 | 152.20 | 2173981 | 5480362 |  |
| F44/0133 | 5.56 | 150.174 | 144.61 | 2177053 | 5479815 |  |
| F44/0139 | 23.96 | 181.974 | 158.01 | 2178822 | 5482766 |  |
| F44/0141 | 2.97 | 143.622 | 140.65 | 2181927 | 5483362 |  |
| F44/0142 | 5.92 | 142.481 | 136.56 | 2181479 | 5481421 |  |
| F44/0144 | 2.57 | 196.473 | 193.90 | 2177009 | 5487116 |  |
| F44/0145 | 3.13 | 165.639 | 162.51 | 2180720 | 5486586 |  |
| F44/0146 | 2 | 164.493 | 162.49 | 2180851 | 5486543 |  |
| F44/0148 | 3.35 | 194.714 | 191.36 | 2176701 | 5486982 |  |
| F44/0149 | 11.32 | 196.698 | 185.38 | 2175915 | 5486403 |  |
| F44/0155 | 1.35 | 188.973 | 187.62 | 2180557 | 5489696 |  |
| F44/0156 | 3.55 | 186.77 | 183.22 | 2181009 | 5489788 |  |
| F44/0158 | 4.97 | 153.877 | 148.91 | 2183923 | 5486740 | poor acc |
| F44/0159 | 3.91 | 147.9 | 143.99 | 2174752 | 5476142 |  |
| F44/0160 | 1.32 | 154.73 | 153.41 | 2181236 | 5485340 |  |
| F44/0164 | 20.2 | 158.334 | 138.13 | 2180032 | 5479300 |  |
| F44/0165 | 11.78 | 184.778 | 173.00 | 2180451 | 5485613 |  |
| F44/0166 | 5.01 | 186.59 | 181.58 | 2178818 | 5485289 |  |
| F44/0167 | 14.05 | 182.67 | 168.62 | 2178786 | 5483644 |  |
| F44/0170 | 4.11 | 146.339 | 142.23 | 2175292 | 5475860 |  |
| F44/0171 | 20.99 | 189.553 | 168.56 | 2172431 | 5482443 |  |
| F44/0172 | 1.85 | 162.886 | 161.04 | 2173568 | 5473993 |  |
| F44/0173 | 1.93 | 157.29 | 155.36 | 2171405 | 5478606 |  |
| F44/0174 | 1.81 | 156.295 | 154.49 | 2172000 | 5478549 |  |
| F44/0175 | 2.2 | 153.854 | 151.65 | 2172784 | 5478019 |  |
| F44/0176 | 3.34 | 142.61 | 139.27 | 2176398 | 5475061 |  |
| F44/0177 | 1.08 | 129.602 | 128.52 | 2179075 | 5471181 |  |
| F44/0178 | 14.495 | 183.355 | 168.86 | 2178483 | 5484091 |  |
| F44/0179 | 2.66 | 190.197 | 187.54 | 2178462 | 5486532 |  |
| F44/0180 | 2.75 | 140.954 | 138.20 | 2181880 | 5481730 |  |
| F45/0167 | 2.19 | 115.107 | 112.92 | 2182092 | 5465690 |  |
| F45/0171 | 1.52 | 91.214 | 89.69 | 2191540 | 5458855 |  |
| F45/0172 | 2.13 | 97.722 | 95.59 | 2190177 | 5460611 |  |
| F45/0173 | 4.39 | 102.73 | 98.34 | 2189418 | 5461857 |  |
| F45/0179 | 3.65 | 88.486 | 84.84 | 2192447 | 5456269 |  |


| F45/0192 | 1.83 | 120.771 | 118.94 | 2180536 | 5467283 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F45/0195 | 6.27 | 120.602 | 114.33 | 2193685 | 5460015 |  |
| F45/0208 | 1.58 | 117.109 | 115.53 | 2183210 | 5468632 |  |
| F45/0213 | 3.97 | 166.888 | 162.92 | 2173847 | 5469014 |  |
| F45/0221 | 0.77 | 95.912 | 95.14 | 2190485 | 5460480 |  |
| F45/0228 | 2.31 | 114.269 | 111.96 | 2183237 | 5466550 |  |
| F45/0232 | 3.86 | 119.255 | 115.40 | 2193440 | 5459632 | poor acc |
| F45/0279 | 3.58 | 88.224 | 84.64 | 2192497 | 5455988 |  |
| F45/0283 | 2.63 | 111.672 | 109.04 | 2182884 | 5464136 |  |
| F45/0286 | 1.97 | 99.414 | 97.44 | 2186880 | 5459645 |  |
| F45/0289 | 2.45 | 113.321 | 110.87 | 2183519 | 5466146 |  |
| F45/0304 | 3.15 | 168.213 | 165.06 | 2172992 | 5468287 |  |
| F45/0305 | 2.81 | 97.32 | 94.51 | 2188658 | 5459620 |  |
| F45/0332 | 2.78 | 116.974 | 114.19 | 2193642 | 5459425 |  |
| F45/0333 | 2.43 | 102.085 | 99.66 | 2187296 | 5461557 |  |
| F45/0334 | 1.72 | 106.956 | 105.24 | 2187293 | 5464409 |  |
| F45/0335 | 1.46 | 105.85 | 104.39 | 2186412 | 5464009 |  |
| F45/0336 | 4.55 | 116.821 | 112.27 | 2194021 | 5459307 |  |
| F45/0340 | 0.56 | 107.199 | 106.64 | 2188077 | 5463771 |  |
| F45/0341 | 0.43 | 94.376 | 93.95 | 2190645 | 5459415 |  |
| F45/0342 | 0.76 | 97.354 | 96.59 | 2191755 | 5459420 |  |
| F45/0343 | 10.23 | 118.883 | 108.65 | 2191775 | 5461015 |  |
| F45/0344 | 0 | 97.731 | 97.73 | 2194209 | 5457682 |  |
| F45/0345 | 7.2 | 122.671 | 115.47 | 2193575 | 5460265 |  |
| F45/0346 | 1.68 | 97.069 | 95.39 | 2189023 | 5459978 |  |
| F45/0347 | 1.33 | 97.286 | 95.96 | 2188970 | 5460309 |  |
| F45/0348 | 2.82 | 92.827 | 90.01 | 2190705 | 5458755 |  |
| F45/0350 | 2.02 | 105.254 | 103.23 | 2184361 | 5462028 |  |
| F45/0352 | 1.21 | 103.985 | 102.78 | 2184228 | 5461237 |  |
| F45/0353 | 4.58 | 106.374 | 101.79 | 2184899 | 5463577 |  |
| F45/0354 | 1.4 | 121.205 | 119.81 | 2180197 | 5467509 |  |
| F45/0355 | 1.13 | 113.733 | 112.60 | 2182239 | 5465515 |  |
| F45/0358 | $>17.00$ | 154.85 |  | 2178788 | 5466780 |  |
| F45/0360 | 1.19 | 118.092 | 116.90 | 2184497 | 5469716 | poor acc |
| F45/0361 | 1.4 | 129.278 | 127.88 | 2178840 | 5465699 | poor acc |
| F45/0362 | 6.08 | 184.191 | 178.11 | 2175050 | 5466988 | poor acc |
| F45/0364 | 4.46 | 143.57 | 139.11 | 2174260 | 5465984 | poor acc |
| F45/0365 | 1.48 | 156.302 | 154.82 | 2174520 | 5469311 |  |
| F45/0366 | 5.65 | 158.214 | 152.56 | 2174931 | 5469115 |  |
| F45/0367 | 6.32 | 121.824 | 115.50 | 2187847 | 5465317 |  |
| F45/0369 | 2.75 | 107.542 | 104.79 | 2183519 | 5462322 |  |
| F45/0370 | 1.71 | 103.193 | 101.48 | 2185408 | 5460216 |  |
| F45/0373 | 3.35 | 96.53 | 93.18 | 2189185 | 5458755 |  |
| F45/0374 | 2.56 | 117.377 | 114.82 | 2183818 | 5468940 |  |
| F45/0376 | 1.88 | 107.232 | 105.35 | 2184677 | 5463807 |  |
| F45/0377 | 1.55 | 115.582 | 114.03 | 2182535 | 5466888 |  |
| F45/0378 | 17.52 | 179.6 | 162.08 | 2172494 | 5469864 |  |


| F45/0380 | 1.89 | 104.429 | 102.54 | 2184855 | 5461836 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| F45/0381 | 0.28 | 129.3656 | 129.09 | 2178164 | 5469703 | Dodgy bore |
| F45/0382 | 9.59 | 175.102 | 165.51 | 2174271 | 5468535 |  |
| F45/0383 | 1.29 | 132.452 | 131.16 | 2178113 | 5468024 |  |
| F45/0385 | 3.8 | 151.325 | 147.53 | 2176138 | 5468142 | poor acc |
| F44/0182 | 2.78 | 122.532 | 119.75 | 5470461.3 | 2182911.3 |  |

Spot Heights

| sh1 |  | 142.903 | $\mathbf{1 4 2 . 9 0}$ | 5465366.3 | 2188009.8 |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| sh2 |  | 143.75 | $\mathbf{1 4 3 . 7 5}$ | 5463428.1 | 2190137 |  |
| sh3 |  | 109.155 | $\mathbf{1 0 9 . 1 6}$ | 5461926.6 | 2189706.8 |  |
| sh4 | 112.55 | $\mathbf{1 1 2 . 5 5}$ | 5458158.3 | 2194109.9 |  |  |
| sh5 |  | 112.006 | $\mathbf{1 1 2 . 0 1}$ | 5465848.7 | 2183016.9 |  |
| sh6 | 119.507 | $\mathbf{1 1 9 . 5 1}$ | 5467763.6 | 2180616.5 |  |  |
| sh7 |  | 149.963 | $\mathbf{1 4 9 . 9 6}$ | 5465807.5 | 2178964 |  |
| sh8 | 179.029 | $\mathbf{1 7 9 . 0 3}$ | 5480000.5 | 2170316.8 |  |  |
| sh9 |  | 158.655 | $\mathbf{1 5 8 . 6 6}$ | 5479952.5 | 2170480.5 |  |
| sh10 |  | 146.004 | $\mathbf{1 4 6 . 0 0}$ | 5484938.3 | 2182450.8 |  |

